Whakaoti mō x (complex solution)
x=-\frac{7}{2}+i=-3.5+i
x=-\frac{7}{2}-i=-3.5-i
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+28x+53=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-28±\sqrt{28^{2}-4\times 4\times 53}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 28 mō b, me 53 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 4\times 53}}{2\times 4}
Pūrua 28.
x=\frac{-28±\sqrt{784-16\times 53}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-28±\sqrt{784-848}}{2\times 4}
Whakareatia -16 ki te 53.
x=\frac{-28±\sqrt{-64}}{2\times 4}
Tāpiri 784 ki te -848.
x=\frac{-28±8i}{2\times 4}
Tuhia te pūtakerua o te -64.
x=\frac{-28±8i}{8}
Whakareatia 2 ki te 4.
x=\frac{-28+8i}{8}
Nā, me whakaoti te whārite x=\frac{-28±8i}{8} ina he tāpiri te ±. Tāpiri -28 ki te 8i.
x=-\frac{7}{2}+i
Whakawehe -28+8i ki te 8.
x=\frac{-28-8i}{8}
Nā, me whakaoti te whārite x=\frac{-28±8i}{8} ina he tango te ±. Tango 8i mai i -28.
x=-\frac{7}{2}-i
Whakawehe -28-8i ki te 8.
x=-\frac{7}{2}+i x=-\frac{7}{2}-i
Kua oti te whārite te whakatau.
4x^{2}+28x+53=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}+28x+53-53=-53
Me tango 53 mai i ngā taha e rua o te whārite.
4x^{2}+28x=-53
Mā te tango i te 53 i a ia ake anō ka toe ko te 0.
\frac{4x^{2}+28x}{4}=-\frac{53}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{28}{4}x=-\frac{53}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+7x=-\frac{53}{4}
Whakawehe 28 ki te 4.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-\frac{53}{4}+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+7x+\frac{49}{4}=\frac{-53+49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+7x+\frac{49}{4}=-1
Tāpiri -\frac{53}{4} ki te \frac{49}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{2}\right)^{2}=-1
Tauwehea x^{2}+7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{-1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{2}=i x+\frac{7}{2}=-i
Whakarūnātia.
x=-\frac{7}{2}+i x=-\frac{7}{2}-i
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}