Whakaoti mō x
x=-5
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+7x+10=0
Whakawehea ngā taha e rua ki te 4.
a+b=7 ab=1\times 10=10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,10 2,5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 10.
1+10=11 2+5=7
Tātaihia te tapeke mō ia takirua.
a=2 b=5
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(x^{2}+2x\right)+\left(5x+10\right)
Tuhia anō te x^{2}+7x+10 hei \left(x^{2}+2x\right)+\left(5x+10\right).
x\left(x+2\right)+5\left(x+2\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(x+2\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-5
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+5=0.
4x^{2}+28x+40=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-28±\sqrt{28^{2}-4\times 4\times 40}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 28 mō b, me 40 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 4\times 40}}{2\times 4}
Pūrua 28.
x=\frac{-28±\sqrt{784-16\times 40}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-28±\sqrt{784-640}}{2\times 4}
Whakareatia -16 ki te 40.
x=\frac{-28±\sqrt{144}}{2\times 4}
Tāpiri 784 ki te -640.
x=\frac{-28±12}{2\times 4}
Tuhia te pūtakerua o te 144.
x=\frac{-28±12}{8}
Whakareatia 2 ki te 4.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{-28±12}{8} ina he tāpiri te ±. Tāpiri -28 ki te 12.
x=-2
Whakawehe -16 ki te 8.
x=-\frac{40}{8}
Nā, me whakaoti te whārite x=\frac{-28±12}{8} ina he tango te ±. Tango 12 mai i -28.
x=-5
Whakawehe -40 ki te 8.
x=-2 x=-5
Kua oti te whārite te whakatau.
4x^{2}+28x+40=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}+28x+40-40=-40
Me tango 40 mai i ngā taha e rua o te whārite.
4x^{2}+28x=-40
Mā te tango i te 40 i a ia ake anō ka toe ko te 0.
\frac{4x^{2}+28x}{4}=-\frac{40}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{28}{4}x=-\frac{40}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+7x=-\frac{40}{4}
Whakawehe 28 ki te 4.
x^{2}+7x=-10
Whakawehe -40 ki te 4.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-10+\left(\frac{7}{2}\right)^{2}
Whakawehea te 7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{2}. Nā, tāpiria te pūrua o te \frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+7x+\frac{49}{4}=-10+\frac{49}{4}
Pūruatia \frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+7x+\frac{49}{4}=\frac{9}{4}
Tāpiri -10 ki te \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{2}=\frac{3}{2} x+\frac{7}{2}=-\frac{3}{2}
Whakarūnātia.
x=-2 x=-5
Me tango \frac{7}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}