Tauwehe
\left(2x+5\right)\left(2x+7\right)
Aromātai
\left(2x+5\right)\left(2x+7\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=24 ab=4\times 35=140
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4x^{2}+ax+bx+35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,140 2,70 4,35 5,28 7,20 10,14
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 140.
1+140=141 2+70=72 4+35=39 5+28=33 7+20=27 10+14=24
Tātaihia te tapeke mō ia takirua.
a=10 b=14
Ko te otinga te takirua ka hoatu i te tapeke 24.
\left(4x^{2}+10x\right)+\left(14x+35\right)
Tuhia anō te 4x^{2}+24x+35 hei \left(4x^{2}+10x\right)+\left(14x+35\right).
2x\left(2x+5\right)+7\left(2x+5\right)
Tauwehea te 2x i te tuatahi me te 7 i te rōpū tuarua.
\left(2x+5\right)\left(2x+7\right)
Whakatauwehea atu te kīanga pātahi 2x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
4x^{2}+24x+35=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-24±\sqrt{24^{2}-4\times 4\times 35}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24±\sqrt{576-4\times 4\times 35}}{2\times 4}
Pūrua 24.
x=\frac{-24±\sqrt{576-16\times 35}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-24±\sqrt{576-560}}{2\times 4}
Whakareatia -16 ki te 35.
x=\frac{-24±\sqrt{16}}{2\times 4}
Tāpiri 576 ki te -560.
x=\frac{-24±4}{2\times 4}
Tuhia te pūtakerua o te 16.
x=\frac{-24±4}{8}
Whakareatia 2 ki te 4.
x=-\frac{20}{8}
Nā, me whakaoti te whārite x=\frac{-24±4}{8} ina he tāpiri te ±. Tāpiri -24 ki te 4.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{28}{8}
Nā, me whakaoti te whārite x=\frac{-24±4}{8} ina he tango te ±. Tango 4 mai i -24.
x=-\frac{7}{2}
Whakahekea te hautanga \frac{-28}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4x^{2}+24x+35=4\left(x-\left(-\frac{5}{2}\right)\right)\left(x-\left(-\frac{7}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{5}{2} mō te x_{1} me te -\frac{7}{2} mō te x_{2}.
4x^{2}+24x+35=4\left(x+\frac{5}{2}\right)\left(x+\frac{7}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4x^{2}+24x+35=4\times \frac{2x+5}{2}\left(x+\frac{7}{2}\right)
Tāpiri \frac{5}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+24x+35=4\times \frac{2x+5}{2}\times \frac{2x+7}{2}
Tāpiri \frac{7}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+24x+35=4\times \frac{\left(2x+5\right)\left(2x+7\right)}{2\times 2}
Whakareatia \frac{2x+5}{2} ki te \frac{2x+7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+24x+35=4\times \frac{\left(2x+5\right)\left(2x+7\right)}{4}
Whakareatia 2 ki te 2.
4x^{2}+24x+35=\left(2x+5\right)\left(2x+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}