Whakaoti mō x
x=-4
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+6x+8=0
Whakawehea ngā taha e rua ki te 4.
a+b=6 ab=1\times 8=8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,8 2,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
1+8=9 2+4=6
Tātaihia te tapeke mō ia takirua.
a=2 b=4
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(x^{2}+2x\right)+\left(4x+8\right)
Tuhia anō te x^{2}+6x+8 hei \left(x^{2}+2x\right)+\left(4x+8\right).
x\left(x+2\right)+4\left(x+2\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x+2\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-4
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+4=0.
4x^{2}+24x+32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24±\sqrt{24^{2}-4\times 4\times 32}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 24 mō b, me 32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 4\times 32}}{2\times 4}
Pūrua 24.
x=\frac{-24±\sqrt{576-16\times 32}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-24±\sqrt{576-512}}{2\times 4}
Whakareatia -16 ki te 32.
x=\frac{-24±\sqrt{64}}{2\times 4}
Tāpiri 576 ki te -512.
x=\frac{-24±8}{2\times 4}
Tuhia te pūtakerua o te 64.
x=\frac{-24±8}{8}
Whakareatia 2 ki te 4.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{-24±8}{8} ina he tāpiri te ±. Tāpiri -24 ki te 8.
x=-2
Whakawehe -16 ki te 8.
x=-\frac{32}{8}
Nā, me whakaoti te whārite x=\frac{-24±8}{8} ina he tango te ±. Tango 8 mai i -24.
x=-4
Whakawehe -32 ki te 8.
x=-2 x=-4
Kua oti te whārite te whakatau.
4x^{2}+24x+32=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}+24x+32-32=-32
Me tango 32 mai i ngā taha e rua o te whārite.
4x^{2}+24x=-32
Mā te tango i te 32 i a ia ake anō ka toe ko te 0.
\frac{4x^{2}+24x}{4}=-\frac{32}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{24}{4}x=-\frac{32}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+6x=-\frac{32}{4}
Whakawehe 24 ki te 4.
x^{2}+6x=-8
Whakawehe -32 ki te 4.
x^{2}+6x+3^{2}=-8+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=-8+9
Pūrua 3.
x^{2}+6x+9=1
Tāpiri -8 ki te 9.
\left(x+3\right)^{2}=1
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=1 x+3=-1
Whakarūnātia.
x=-2 x=-4
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}