Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+2x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-8\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 2 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4\left(-8\right)}}{2\times 4}
Pūrua 2.
x=\frac{-2±\sqrt{4-16\left(-8\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-2±\sqrt{4+128}}{2\times 4}
Whakareatia -16 ki te -8.
x=\frac{-2±\sqrt{132}}{2\times 4}
Tāpiri 4 ki te 128.
x=\frac{-2±2\sqrt{33}}{2\times 4}
Tuhia te pūtakerua o te 132.
x=\frac{-2±2\sqrt{33}}{8}
Whakareatia 2 ki te 4.
x=\frac{2\sqrt{33}-2}{8}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{33}}{8} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{33}.
x=\frac{\sqrt{33}-1}{4}
Whakawehe -2+2\sqrt{33} ki te 8.
x=\frac{-2\sqrt{33}-2}{8}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{33}}{8} ina he tango te ±. Tango 2\sqrt{33} mai i -2.
x=\frac{-\sqrt{33}-1}{4}
Whakawehe -2-2\sqrt{33} ki te 8.
x=\frac{\sqrt{33}-1}{4} x=\frac{-\sqrt{33}-1}{4}
Kua oti te whārite te whakatau.
4x^{2}+2x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}+2x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
4x^{2}+2x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
4x^{2}+2x=8
Tango -8 mai i 0.
\frac{4x^{2}+2x}{4}=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{2}{4}x=\frac{8}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{1}{2}x=\frac{8}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{2}x=2
Whakawehe 8 ki te 4.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=2+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=2+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{33}{16}
Tāpiri 2 ki te \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{33}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{\sqrt{33}}{4} x+\frac{1}{4}=-\frac{\sqrt{33}}{4}
Whakarūnātia.
x=\frac{\sqrt{33}-1}{4} x=\frac{-\sqrt{33}-1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.