Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+2x-12=0
Tangohia te 12 mai i ngā taha e rua.
2x^{2}+x-6=0
Whakawehea ngā taha e rua ki te 2.
a+b=1 ab=2\left(-6\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(2x^{2}-3x\right)+\left(4x-6\right)
Tuhia anō te 2x^{2}+x-6 hei \left(2x^{2}-3x\right)+\left(4x-6\right).
x\left(2x-3\right)+2\left(2x-3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(2x-3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{2} x=-2
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te x+2=0.
4x^{2}+2x=12
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4x^{2}+2x-12=12-12
Me tango 12 mai i ngā taha e rua o te whārite.
4x^{2}+2x-12=0
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-12\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 2 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4\left(-12\right)}}{2\times 4}
Pūrua 2.
x=\frac{-2±\sqrt{4-16\left(-12\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-2±\sqrt{4+192}}{2\times 4}
Whakareatia -16 ki te -12.
x=\frac{-2±\sqrt{196}}{2\times 4}
Tāpiri 4 ki te 192.
x=\frac{-2±14}{2\times 4}
Tuhia te pūtakerua o te 196.
x=\frac{-2±14}{8}
Whakareatia 2 ki te 4.
x=\frac{12}{8}
Nā, me whakaoti te whārite x=\frac{-2±14}{8} ina he tāpiri te ±. Tāpiri -2 ki te 14.
x=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{-2±14}{8} ina he tango te ±. Tango 14 mai i -2.
x=-2
Whakawehe -16 ki te 8.
x=\frac{3}{2} x=-2
Kua oti te whārite te whakatau.
4x^{2}+2x=12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}+2x}{4}=\frac{12}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{2}{4}x=\frac{12}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{1}{2}x=\frac{12}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{2}x=3
Whakawehe 12 ki te 4.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Tāpiri 3 ki te \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{49}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{7}{4} x+\frac{1}{4}=-\frac{7}{4}
Whakarūnātia.
x=\frac{3}{2} x=-2
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.