Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+2x+1-21=0
Tangohia te 21 mai i ngā taha e rua.
4x^{2}+2x-20=0
Tangohia te 21 i te 1, ka -20.
2x^{2}+x-10=0
Whakawehea ngā taha e rua ki te 2.
a+b=1 ab=2\left(-10\right)=-20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,20 -2,10 -4,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
-1+20=19 -2+10=8 -4+5=1
Tātaihia te tapeke mō ia takirua.
a=-4 b=5
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(2x^{2}-4x\right)+\left(5x-10\right)
Tuhia anō te 2x^{2}+x-10 hei \left(2x^{2}-4x\right)+\left(5x-10\right).
2x\left(x-2\right)+5\left(x-2\right)
Tauwehea te 2x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-2\right)\left(2x+5\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{5}{2}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 2x+5=0.
4x^{2}+2x+1=21
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4x^{2}+2x+1-21=21-21
Me tango 21 mai i ngā taha e rua o te whārite.
4x^{2}+2x+1-21=0
Mā te tango i te 21 i a ia ake anō ka toe ko te 0.
4x^{2}+2x-20=0
Tango 21 mai i 1.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-20\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 2 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4\left(-20\right)}}{2\times 4}
Pūrua 2.
x=\frac{-2±\sqrt{4-16\left(-20\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-2±\sqrt{4+320}}{2\times 4}
Whakareatia -16 ki te -20.
x=\frac{-2±\sqrt{324}}{2\times 4}
Tāpiri 4 ki te 320.
x=\frac{-2±18}{2\times 4}
Tuhia te pūtakerua o te 324.
x=\frac{-2±18}{8}
Whakareatia 2 ki te 4.
x=\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{-2±18}{8} ina he tāpiri te ±. Tāpiri -2 ki te 18.
x=2
Whakawehe 16 ki te 8.
x=-\frac{20}{8}
Nā, me whakaoti te whārite x=\frac{-2±18}{8} ina he tango te ±. Tango 18 mai i -2.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=2 x=-\frac{5}{2}
Kua oti te whārite te whakatau.
4x^{2}+2x+1=21
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4x^{2}+2x+1-1=21-1
Me tango 1 mai i ngā taha e rua o te whārite.
4x^{2}+2x=21-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
4x^{2}+2x=20
Tango 1 mai i 21.
\frac{4x^{2}+2x}{4}=\frac{20}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{2}{4}x=\frac{20}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{1}{2}x=\frac{20}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{2}x=5
Whakawehe 20 ki te 4.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=5+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=5+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{81}{16}
Tāpiri 5 ki te \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{81}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{9}{4} x+\frac{1}{4}=-\frac{9}{4}
Whakarūnātia.
x=2 x=-\frac{5}{2}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.