Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+14x-12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\times 4\left(-12\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-14±\sqrt{196-4\times 4\left(-12\right)}}{2\times 4}
Pūrua 14.
x=\frac{-14±\sqrt{196-16\left(-12\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-14±\sqrt{196+192}}{2\times 4}
Whakareatia -16 ki te -12.
x=\frac{-14±\sqrt{388}}{2\times 4}
Tāpiri 196 ki te 192.
x=\frac{-14±2\sqrt{97}}{2\times 4}
Tuhia te pūtakerua o te 388.
x=\frac{-14±2\sqrt{97}}{8}
Whakareatia 2 ki te 4.
x=\frac{2\sqrt{97}-14}{8}
Nā, me whakaoti te whārite x=\frac{-14±2\sqrt{97}}{8} ina he tāpiri te ±. Tāpiri -14 ki te 2\sqrt{97}.
x=\frac{\sqrt{97}-7}{4}
Whakawehe -14+2\sqrt{97} ki te 8.
x=\frac{-2\sqrt{97}-14}{8}
Nā, me whakaoti te whārite x=\frac{-14±2\sqrt{97}}{8} ina he tango te ±. Tango 2\sqrt{97} mai i -14.
x=\frac{-\sqrt{97}-7}{4}
Whakawehe -14-2\sqrt{97} ki te 8.
4x^{2}+14x-12=4\left(x-\frac{\sqrt{97}-7}{4}\right)\left(x-\frac{-\sqrt{97}-7}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-7+\sqrt{97}}{4} mō te x_{1} me te \frac{-7-\sqrt{97}}{4} mō te x_{2}.