Whakaoti mō q
q=4\left(p\left(2x+p\right)-3x\right)
Whakaoti mō p (complex solution)
p=-\frac{\sqrt{4x^{2}+12x+q}}{2}-x
p=\frac{\sqrt{4x^{2}+12x+q}}{2}-x
Whakaoti mō p
p=-\frac{\sqrt{4x^{2}+12x+q}}{2}-x
p=\frac{\sqrt{4x^{2}+12x+q}}{2}-x\text{, }q\geq -4x^{2}-12x
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+12x=4\left(x^{2}+2xp+p^{2}\right)-q
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+p\right)^{2}.
4x^{2}+12x=4x^{2}+8xp+4p^{2}-q
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}+2xp+p^{2}.
4x^{2}+8xp+4p^{2}-q=4x^{2}+12x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8xp+4p^{2}-q=4x^{2}+12x-4x^{2}
Tangohia te 4x^{2} mai i ngā taha e rua.
8xp+4p^{2}-q=12x
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
4p^{2}-q=12x-8xp
Tangohia te 8xp mai i ngā taha e rua.
-q=12x-8xp-4p^{2}
Tangohia te 4p^{2} mai i ngā taha e rua.
-q=-8px+12x-4p^{2}
He hanga arowhānui tō te whārite.
\frac{-q}{-1}=\frac{-8px+12x-4p^{2}}{-1}
Whakawehea ngā taha e rua ki te -1.
q=\frac{-8px+12x-4p^{2}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
q=8px-12x+4p^{2}
Whakawehe 12x-8xp-4p^{2} ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}