Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(2x^{2}+5x+3\right)
Tauwehea te 2.
a+b=5 ab=2\times 3=6
Whakaarohia te 2x^{2}+5x+3. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(2x^{2}+2x\right)+\left(3x+3\right)
Tuhia anō te 2x^{2}+5x+3 hei \left(2x^{2}+2x\right)+\left(3x+3\right).
2x\left(x+1\right)+3\left(x+1\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(x+1\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(x+1\right)\left(2x+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4x^{2}+10x+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 4\times 6}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{100-4\times 4\times 6}}{2\times 4}
Pūrua 10.
x=\frac{-10±\sqrt{100-16\times 6}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-10±\sqrt{100-96}}{2\times 4}
Whakareatia -16 ki te 6.
x=\frac{-10±\sqrt{4}}{2\times 4}
Tāpiri 100 ki te -96.
x=\frac{-10±2}{2\times 4}
Tuhia te pūtakerua o te 4.
x=\frac{-10±2}{8}
Whakareatia 2 ki te 4.
x=-\frac{8}{8}
Nā, me whakaoti te whārite x=\frac{-10±2}{8} ina he tāpiri te ±. Tāpiri -10 ki te 2.
x=-1
Whakawehe -8 ki te 8.
x=-\frac{12}{8}
Nā, me whakaoti te whārite x=\frac{-10±2}{8} ina he tango te ±. Tango 2 mai i -10.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4x^{2}+10x+6=4\left(x-\left(-1\right)\right)\left(x-\left(-\frac{3}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -\frac{3}{2} mō te x_{2}.
4x^{2}+10x+6=4\left(x+1\right)\left(x+\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4x^{2}+10x+6=4\left(x+1\right)\times \frac{2x+3}{2}
Tāpiri \frac{3}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+10x+6=2\left(x+1\right)\left(2x+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.