Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+1-4x=0
Tangohia te 4x mai i ngā taha e rua.
4x^{2}-4x+1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-4 ab=4\times 1=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-4 -2,-2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
-1-4=-5 -2-2=-4
Tātaihia te tapeke mō ia takirua.
a=-2 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(4x^{2}-2x\right)+\left(-2x+1\right)
Tuhia anō te 4x^{2}-4x+1 hei \left(4x^{2}-2x\right)+\left(-2x+1\right).
2x\left(2x-1\right)-\left(2x-1\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-1\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2x-1\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=\frac{1}{2}
Hei kimi i te otinga whārite, whakaotia te 2x-1=0.
4x^{2}+1-4x=0
Tangohia te 4x mai i ngā taha e rua.
4x^{2}-4x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -4 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2\times 4}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2\times 4}
Tāpiri 16 ki te -16.
x=-\frac{-4}{2\times 4}
Tuhia te pūtakerua o te 0.
x=\frac{4}{2\times 4}
Ko te tauaro o -4 ko 4.
x=\frac{4}{8}
Whakareatia 2 ki te 4.
x=\frac{1}{2}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4x^{2}+1-4x=0
Tangohia te 4x mai i ngā taha e rua.
4x^{2}-4x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}-4x}{4}=-\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{4}{4}\right)x=-\frac{1}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-x=-\frac{1}{4}
Whakawehe -4 ki te 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{-1+1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=0
Tāpiri -\frac{1}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=0
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=0 x-\frac{1}{2}=0
Whakarūnātia.
x=\frac{1}{2} x=\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
x=\frac{1}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}