Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+9+12x=0
Tātaitia te \sqrt[3]{729} kia tae ki 9.
4x^{2}+12x+9=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=12 ab=4\times 9=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(4x^{2}+6x\right)+\left(6x+9\right)
Tuhia anō te 4x^{2}+12x+9 hei \left(4x^{2}+6x\right)+\left(6x+9\right).
2x\left(2x+3\right)+3\left(2x+3\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(2x+3\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 2x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2x+3\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-\frac{3}{2}
Hei kimi i te otinga whārite, whakaotia te 2x+3=0.
4x^{2}+9+12x=0
Tātaitia te \sqrt[3]{729} kia tae ki 9.
4x^{2}+12x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 12 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
Pūrua 12.
x=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-12±\sqrt{144-144}}{2\times 4}
Whakareatia -16 ki te 9.
x=\frac{-12±\sqrt{0}}{2\times 4}
Tāpiri 144 ki te -144.
x=-\frac{12}{2\times 4}
Tuhia te pūtakerua o te 0.
x=-\frac{12}{8}
Whakareatia 2 ki te 4.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4x^{2}+9+12x=0
Tātaitia te \sqrt[3]{729} kia tae ki 9.
4x^{2}+12x=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}+12x}{4}=-\frac{9}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{12}{4}x=-\frac{9}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+3x=-\frac{9}{4}
Whakawehe 12 ki te 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=0
Tāpiri -\frac{9}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{2}\right)^{2}=0
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=0 x+\frac{3}{2}=0
Whakarūnātia.
x=-\frac{3}{2} x=-\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
x=-\frac{3}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.