Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=-\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{\sqrt{3}i}{2} x=-\frac{\sqrt{3}i}{2}
Kua oti te whārite te whakatau.
4x^{2}+3=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 4\times 3}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\times 3}}{2\times 4}
Pūrua 0.
x=\frac{0±\sqrt{-16\times 3}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{0±\sqrt{-48}}{2\times 4}
Whakareatia -16 ki te 3.
x=\frac{0±4\sqrt{3}i}{2\times 4}
Tuhia te pūtakerua o te -48.
x=\frac{0±4\sqrt{3}i}{8}
Whakareatia 2 ki te 4.
x=\frac{\sqrt{3}i}{2}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}i}{8} ina he tāpiri te ±.
x=-\frac{\sqrt{3}i}{2}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}i}{8} ina he tango te ±.
x=\frac{\sqrt{3}i}{2} x=-\frac{\sqrt{3}i}{2}
Kua oti te whārite te whakatau.