Whakaoti mō x
x = \frac{\sqrt{5} + 3}{2} \approx 2.618033989
x=\frac{3-\sqrt{5}}{2}\approx 0.381966011
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-4x^{2}=-8x+4
Tangohia te 4x^{2} mai i ngā taha e rua.
4x-4x^{2}+8x=4
Me tāpiri te 8x ki ngā taha e rua.
12x-4x^{2}=4
Pahekotia te 4x me 8x, ka 12x.
12x-4x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-4x^{2}+12x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 12 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Pūrua 12.
x=\frac{-12±\sqrt{144+16\left(-4\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-12±\sqrt{144-64}}{2\left(-4\right)}
Whakareatia 16 ki te -4.
x=\frac{-12±\sqrt{80}}{2\left(-4\right)}
Tāpiri 144 ki te -64.
x=\frac{-12±4\sqrt{5}}{2\left(-4\right)}
Tuhia te pūtakerua o te 80.
x=\frac{-12±4\sqrt{5}}{-8}
Whakareatia 2 ki te -4.
x=\frac{4\sqrt{5}-12}{-8}
Nā, me whakaoti te whārite x=\frac{-12±4\sqrt{5}}{-8} ina he tāpiri te ±. Tāpiri -12 ki te 4\sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Whakawehe -12+4\sqrt{5} ki te -8.
x=\frac{-4\sqrt{5}-12}{-8}
Nā, me whakaoti te whārite x=\frac{-12±4\sqrt{5}}{-8} ina he tango te ±. Tango 4\sqrt{5} mai i -12.
x=\frac{\sqrt{5}+3}{2}
Whakawehe -12-4\sqrt{5} ki te -8.
x=\frac{3-\sqrt{5}}{2} x=\frac{\sqrt{5}+3}{2}
Kua oti te whārite te whakatau.
4x-4x^{2}=-8x+4
Tangohia te 4x^{2} mai i ngā taha e rua.
4x-4x^{2}+8x=4
Me tāpiri te 8x ki ngā taha e rua.
12x-4x^{2}=4
Pahekotia te 4x me 8x, ka 12x.
-4x^{2}+12x=4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4x^{2}+12x}{-4}=\frac{4}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{12}{-4}x=\frac{4}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-3x=\frac{4}{-4}
Whakawehe 12 ki te -4.
x^{2}-3x=-1
Whakawehe 4 ki te -4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=-1+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{5}{4}
Tāpiri -1 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{5}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{5}}{2} x-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Whakarūnātia.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}