Whakaoti mō x
x = -\frac{20}{9} = -2\frac{2}{9} \approx -2.222222222
Graph
Tohaina
Kua tāruatia ki te papatopenga
-24x-6\times 3^{2}=\frac{2}{-3}
Whakareatia ngā taha e rua o te whārite ki te -6.
-24x-6\times 9=\frac{2}{-3}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
-24x-54=\frac{2}{-3}
Whakareatia te -6 ki te 9, ka -54.
-24x-54=-\frac{2}{3}
Ka taea te hautanga \frac{2}{-3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
-24x=-\frac{2}{3}+54
Me tāpiri te 54 ki ngā taha e rua.
-24x=-\frac{2}{3}+\frac{162}{3}
Me tahuri te 54 ki te hautau \frac{162}{3}.
-24x=\frac{-2+162}{3}
Tā te mea he rite te tauraro o -\frac{2}{3} me \frac{162}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-24x=\frac{160}{3}
Tāpirihia te -2 ki te 162, ka 160.
x=\frac{\frac{160}{3}}{-24}
Whakawehea ngā taha e rua ki te -24.
x=\frac{160}{3\left(-24\right)}
Tuhia te \frac{\frac{160}{3}}{-24} hei hautanga kotahi.
x=\frac{160}{-72}
Whakareatia te 3 ki te -24, ka -72.
x=-\frac{20}{9}
Whakahekea te hautanga \frac{160}{-72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}