Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+4x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-8\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-8\right)}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8\left(-8\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{16+64}}{2\times 2}
Whakareatia -8 ki te -8.
x=\frac{-4±\sqrt{80}}{2\times 2}
Tāpiri 16 ki te 64.
x=\frac{-4±4\sqrt{5}}{2\times 2}
Tuhia te pūtakerua o te 80.
x=\frac{-4±4\sqrt{5}}{4}
Whakareatia 2 ki te 2.
x=\frac{4\sqrt{5}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{5}}{4} ina he tāpiri te ±. Tāpiri -4 ki te 4\sqrt{5}.
x=\sqrt{5}-1
Whakawehe -4+4\sqrt{5} ki te 4.
x=\frac{-4\sqrt{5}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{5}}{4} ina he tango te ±. Tango 4\sqrt{5} mai i -4.
x=-\sqrt{5}-1
Whakawehe -4-4\sqrt{5} ki te 4.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Kua oti te whārite te whakatau.
2x^{2}+4x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+4x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
2x^{2}+4x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
2x^{2}+4x=8
Tango -8 mai i 0.
\frac{2x^{2}+4x}{2}=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{4}{2}x=\frac{8}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+2x=\frac{8}{2}
Whakawehe 4 ki te 2.
x^{2}+2x=4
Whakawehe 8 ki te 2.
x^{2}+2x+1^{2}=4+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=4+1
Pūrua 1.
x^{2}+2x+1=5
Tāpiri 4 ki te 1.
\left(x+1\right)^{2}=5
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{5} x+1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.
2x^{2}+4x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-8\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-8\right)}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8\left(-8\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{16+64}}{2\times 2}
Whakareatia -8 ki te -8.
x=\frac{-4±\sqrt{80}}{2\times 2}
Tāpiri 16 ki te 64.
x=\frac{-4±4\sqrt{5}}{2\times 2}
Tuhia te pūtakerua o te 80.
x=\frac{-4±4\sqrt{5}}{4}
Whakareatia 2 ki te 2.
x=\frac{4\sqrt{5}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{5}}{4} ina he tāpiri te ±. Tāpiri -4 ki te 4\sqrt{5}.
x=\sqrt{5}-1
Whakawehe -4+4\sqrt{5} ki te 4.
x=\frac{-4\sqrt{5}-4}{4}
Nā, me whakaoti te whārite x=\frac{-4±4\sqrt{5}}{4} ina he tango te ±. Tango 4\sqrt{5} mai i -4.
x=-\sqrt{5}-1
Whakawehe -4-4\sqrt{5} ki te 4.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Kua oti te whārite te whakatau.
2x^{2}+4x-8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+4x-8-\left(-8\right)=-\left(-8\right)
Me tāpiri 8 ki ngā taha e rua o te whārite.
2x^{2}+4x=-\left(-8\right)
Mā te tango i te -8 i a ia ake anō ka toe ko te 0.
2x^{2}+4x=8
Tango -8 mai i 0.
\frac{2x^{2}+4x}{2}=\frac{8}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{4}{2}x=\frac{8}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+2x=\frac{8}{2}
Whakawehe 4 ki te 2.
x^{2}+2x=4
Whakawehe 8 ki te 2.
x^{2}+2x+1^{2}=4+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=4+1
Pūrua 1.
x^{2}+2x+1=5
Tāpiri 4 ki te 1.
\left(x+1\right)^{2}=5
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{5} x+1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.