Whakaoti mō x
x=\frac{\sqrt{829}}{30}+\frac{4}{15}\approx 1.226412003
x=-\frac{\sqrt{829}}{30}+\frac{4}{15}\approx -0.69307867
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+102=-60x+120x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -20x ki te 3-6x.
4x+102+60x=120x^{2}
Me tāpiri te 60x ki ngā taha e rua.
64x+102=120x^{2}
Pahekotia te 4x me 60x, ka 64x.
64x+102-120x^{2}=0
Tangohia te 120x^{2} mai i ngā taha e rua.
-120x^{2}+64x+102=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-64±\sqrt{64^{2}-4\left(-120\right)\times 102}}{2\left(-120\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -120 mō a, 64 mō b, me 102 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-64±\sqrt{4096-4\left(-120\right)\times 102}}{2\left(-120\right)}
Pūrua 64.
x=\frac{-64±\sqrt{4096+480\times 102}}{2\left(-120\right)}
Whakareatia -4 ki te -120.
x=\frac{-64±\sqrt{4096+48960}}{2\left(-120\right)}
Whakareatia 480 ki te 102.
x=\frac{-64±\sqrt{53056}}{2\left(-120\right)}
Tāpiri 4096 ki te 48960.
x=\frac{-64±8\sqrt{829}}{2\left(-120\right)}
Tuhia te pūtakerua o te 53056.
x=\frac{-64±8\sqrt{829}}{-240}
Whakareatia 2 ki te -120.
x=\frac{8\sqrt{829}-64}{-240}
Nā, me whakaoti te whārite x=\frac{-64±8\sqrt{829}}{-240} ina he tāpiri te ±. Tāpiri -64 ki te 8\sqrt{829}.
x=-\frac{\sqrt{829}}{30}+\frac{4}{15}
Whakawehe -64+8\sqrt{829} ki te -240.
x=\frac{-8\sqrt{829}-64}{-240}
Nā, me whakaoti te whārite x=\frac{-64±8\sqrt{829}}{-240} ina he tango te ±. Tango 8\sqrt{829} mai i -64.
x=\frac{\sqrt{829}}{30}+\frac{4}{15}
Whakawehe -64-8\sqrt{829} ki te -240.
x=-\frac{\sqrt{829}}{30}+\frac{4}{15} x=\frac{\sqrt{829}}{30}+\frac{4}{15}
Kua oti te whārite te whakatau.
4x+102=-60x+120x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -20x ki te 3-6x.
4x+102+60x=120x^{2}
Me tāpiri te 60x ki ngā taha e rua.
64x+102=120x^{2}
Pahekotia te 4x me 60x, ka 64x.
64x+102-120x^{2}=0
Tangohia te 120x^{2} mai i ngā taha e rua.
64x-120x^{2}=-102
Tangohia te 102 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-120x^{2}+64x=-102
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-120x^{2}+64x}{-120}=-\frac{102}{-120}
Whakawehea ngā taha e rua ki te -120.
x^{2}+\frac{64}{-120}x=-\frac{102}{-120}
Mā te whakawehe ki te -120 ka wetekia te whakareanga ki te -120.
x^{2}-\frac{8}{15}x=-\frac{102}{-120}
Whakahekea te hautanga \frac{64}{-120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x^{2}-\frac{8}{15}x=\frac{17}{20}
Whakahekea te hautanga \frac{-102}{-120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=\frac{17}{20}+\left(-\frac{4}{15}\right)^{2}
Whakawehea te -\frac{8}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{15}. Nā, tāpiria te pūrua o te -\frac{4}{15} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{17}{20}+\frac{16}{225}
Pūruatia -\frac{4}{15} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{829}{900}
Tāpiri \frac{17}{20} ki te \frac{16}{225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{4}{15}\right)^{2}=\frac{829}{900}
Tauwehea x^{2}-\frac{8}{15}x+\frac{16}{225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{\frac{829}{900}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{15}=\frac{\sqrt{829}}{30} x-\frac{4}{15}=-\frac{\sqrt{829}}{30}
Whakarūnātia.
x=\frac{\sqrt{829}}{30}+\frac{4}{15} x=-\frac{\sqrt{829}}{30}+\frac{4}{15}
Me tāpiri \frac{4}{15} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}