Tauwehe
4\left(v-4\right)\left(v+1\right)
Aromātai
4\left(v-4\right)\left(v+1\right)
Tohaina
Kua tāruatia ki te papatopenga
4\left(v^{2}-3v-4\right)
Tauwehea te 4.
a+b=-3 ab=1\left(-4\right)=-4
Whakaarohia te v^{2}-3v-4. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei v^{2}+av+bv-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=1
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(v^{2}-4v\right)+\left(v-4\right)
Tuhia anō te v^{2}-3v-4 hei \left(v^{2}-4v\right)+\left(v-4\right).
v\left(v-4\right)+v-4
Whakatauwehea atu v i te v^{2}-4v.
\left(v-4\right)\left(v+1\right)
Whakatauwehea atu te kīanga pātahi v-4 mā te whakamahi i te āhuatanga tātai tohatoha.
4\left(v-4\right)\left(v+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4v^{2}-12v-16=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-16\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-16\right)}}{2\times 4}
Pūrua -12.
v=\frac{-\left(-12\right)±\sqrt{144-16\left(-16\right)}}{2\times 4}
Whakareatia -4 ki te 4.
v=\frac{-\left(-12\right)±\sqrt{144+256}}{2\times 4}
Whakareatia -16 ki te -16.
v=\frac{-\left(-12\right)±\sqrt{400}}{2\times 4}
Tāpiri 144 ki te 256.
v=\frac{-\left(-12\right)±20}{2\times 4}
Tuhia te pūtakerua o te 400.
v=\frac{12±20}{2\times 4}
Ko te tauaro o -12 ko 12.
v=\frac{12±20}{8}
Whakareatia 2 ki te 4.
v=\frac{32}{8}
Nā, me whakaoti te whārite v=\frac{12±20}{8} ina he tāpiri te ±. Tāpiri 12 ki te 20.
v=4
Whakawehe 32 ki te 8.
v=-\frac{8}{8}
Nā, me whakaoti te whārite v=\frac{12±20}{8} ina he tango te ±. Tango 20 mai i 12.
v=-1
Whakawehe -8 ki te 8.
4v^{2}-12v-16=4\left(v-4\right)\left(v-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te -1 mō te x_{2}.
4v^{2}-12v-16=4\left(v-4\right)\left(v+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}