Whakaoti mō v
v=3
v=0
Tohaina
Kua tāruatia ki te papatopenga
v\left(4v-12\right)=0
Tauwehea te v.
v=0 v=3
Hei kimi otinga whārite, me whakaoti te v=0 me te 4v-12=0.
4v^{2}-12v=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -12 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-12\right)±12}{2\times 4}
Tuhia te pūtakerua o te \left(-12\right)^{2}.
v=\frac{12±12}{2\times 4}
Ko te tauaro o -12 ko 12.
v=\frac{12±12}{8}
Whakareatia 2 ki te 4.
v=\frac{24}{8}
Nā, me whakaoti te whārite v=\frac{12±12}{8} ina he tāpiri te ±. Tāpiri 12 ki te 12.
v=3
Whakawehe 24 ki te 8.
v=\frac{0}{8}
Nā, me whakaoti te whārite v=\frac{12±12}{8} ina he tango te ±. Tango 12 mai i 12.
v=0
Whakawehe 0 ki te 8.
v=3 v=0
Kua oti te whārite te whakatau.
4v^{2}-12v=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4v^{2}-12v}{4}=\frac{0}{4}
Whakawehea ngā taha e rua ki te 4.
v^{2}+\left(-\frac{12}{4}\right)v=\frac{0}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
v^{2}-3v=\frac{0}{4}
Whakawehe -12 ki te 4.
v^{2}-3v=0
Whakawehe 0 ki te 4.
v^{2}-3v+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}-3v+\frac{9}{4}=\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(v-\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea v^{2}-3v+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v-\frac{3}{2}=\frac{3}{2} v-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
v=3 v=0
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}