Whakaoti mō v
v = -\frac{3}{2} = -1\frac{1}{2} = -1.5
v=-\frac{1}{2}=-0.5
Tohaina
Kua tāruatia ki te papatopenga
4v^{2}+8v+3=0
Me tāpiri te 3 ki ngā taha e rua.
a+b=8 ab=4\times 3=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4v^{2}+av+bv+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=2 b=6
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(4v^{2}+2v\right)+\left(6v+3\right)
Tuhia anō te 4v^{2}+8v+3 hei \left(4v^{2}+2v\right)+\left(6v+3\right).
2v\left(2v+1\right)+3\left(2v+1\right)
Tauwehea te 2v i te tuatahi me te 3 i te rōpū tuarua.
\left(2v+1\right)\left(2v+3\right)
Whakatauwehea atu te kīanga pātahi 2v+1 mā te whakamahi i te āhuatanga tātai tohatoha.
v=-\frac{1}{2} v=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 2v+1=0 me te 2v+3=0.
4v^{2}+8v=-3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4v^{2}+8v-\left(-3\right)=-3-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
4v^{2}+8v-\left(-3\right)=0
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
4v^{2}+8v+3=0
Tango -3 mai i 0.
v=\frac{-8±\sqrt{8^{2}-4\times 4\times 3}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 8 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-8±\sqrt{64-4\times 4\times 3}}{2\times 4}
Pūrua 8.
v=\frac{-8±\sqrt{64-16\times 3}}{2\times 4}
Whakareatia -4 ki te 4.
v=\frac{-8±\sqrt{64-48}}{2\times 4}
Whakareatia -16 ki te 3.
v=\frac{-8±\sqrt{16}}{2\times 4}
Tāpiri 64 ki te -48.
v=\frac{-8±4}{2\times 4}
Tuhia te pūtakerua o te 16.
v=\frac{-8±4}{8}
Whakareatia 2 ki te 4.
v=-\frac{4}{8}
Nā, me whakaoti te whārite v=\frac{-8±4}{8} ina he tāpiri te ±. Tāpiri -8 ki te 4.
v=-\frac{1}{2}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
v=-\frac{12}{8}
Nā, me whakaoti te whārite v=\frac{-8±4}{8} ina he tango te ±. Tango 4 mai i -8.
v=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
v=-\frac{1}{2} v=-\frac{3}{2}
Kua oti te whārite te whakatau.
4v^{2}+8v=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4v^{2}+8v}{4}=-\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
v^{2}+\frac{8}{4}v=-\frac{3}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
v^{2}+2v=-\frac{3}{4}
Whakawehe 8 ki te 4.
v^{2}+2v+1^{2}=-\frac{3}{4}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
v^{2}+2v+1=-\frac{3}{4}+1
Pūrua 1.
v^{2}+2v+1=\frac{1}{4}
Tāpiri -\frac{3}{4} ki te 1.
\left(v+1\right)^{2}=\frac{1}{4}
Tauwehea v^{2}+2v+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v+1\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
v+1=\frac{1}{2} v+1=-\frac{1}{2}
Whakarūnātia.
v=-\frac{1}{2} v=-\frac{3}{2}
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}