Whakaoti mō u
u = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Tohaina
Kua tāruatia ki te papatopenga
4u^{2}+25+20u=0
Me tāpiri te 20u ki ngā taha e rua.
4u^{2}+20u+25=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=20 ab=4\times 25=100
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4u^{2}+au+bu+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,100 2,50 4,25 5,20 10,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 100.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
Tātaihia te tapeke mō ia takirua.
a=10 b=10
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(4u^{2}+10u\right)+\left(10u+25\right)
Tuhia anō te 4u^{2}+20u+25 hei \left(4u^{2}+10u\right)+\left(10u+25\right).
2u\left(2u+5\right)+5\left(2u+5\right)
Tauwehea te 2u i te tuatahi me te 5 i te rōpū tuarua.
\left(2u+5\right)\left(2u+5\right)
Whakatauwehea atu te kīanga pātahi 2u+5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2u+5\right)^{2}
Tuhia anōtia hei pūrua huarua.
u=-\frac{5}{2}
Hei kimi i te otinga whārite, whakaotia te 2u+5=0.
4u^{2}+25+20u=0
Me tāpiri te 20u ki ngā taha e rua.
4u^{2}+20u+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-20±\sqrt{20^{2}-4\times 4\times 25}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 20 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-20±\sqrt{400-4\times 4\times 25}}{2\times 4}
Pūrua 20.
u=\frac{-20±\sqrt{400-16\times 25}}{2\times 4}
Whakareatia -4 ki te 4.
u=\frac{-20±\sqrt{400-400}}{2\times 4}
Whakareatia -16 ki te 25.
u=\frac{-20±\sqrt{0}}{2\times 4}
Tāpiri 400 ki te -400.
u=-\frac{20}{2\times 4}
Tuhia te pūtakerua o te 0.
u=-\frac{20}{8}
Whakareatia 2 ki te 4.
u=-\frac{5}{2}
Whakahekea te hautanga \frac{-20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4u^{2}+25+20u=0
Me tāpiri te 20u ki ngā taha e rua.
4u^{2}+20u=-25
Tangohia te 25 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4u^{2}+20u}{4}=-\frac{25}{4}
Whakawehea ngā taha e rua ki te 4.
u^{2}+\frac{20}{4}u=-\frac{25}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
u^{2}+5u=-\frac{25}{4}
Whakawehe 20 ki te 4.
u^{2}+5u+\left(\frac{5}{2}\right)^{2}=-\frac{25}{4}+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}+5u+\frac{25}{4}=\frac{-25+25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
u^{2}+5u+\frac{25}{4}=0
Tāpiri -\frac{25}{4} ki te \frac{25}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(u+\frac{5}{2}\right)^{2}=0
Tauwehea u^{2}+5u+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u+\frac{5}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u+\frac{5}{2}=0 u+\frac{5}{2}=0
Whakarūnātia.
u=-\frac{5}{2} u=-\frac{5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
u=-\frac{5}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}