Whakaoti mō u
u=-\frac{6v}{7}
Whakaoti mō v
v=-\frac{7u}{6}
Tohaina
Kua tāruatia ki te papatopenga
4u+8v+3u=2v
Me tāpiri te 3u ki ngā taha e rua.
7u+8v=2v
Pahekotia te 4u me 3u, ka 7u.
7u=2v-8v
Tangohia te 8v mai i ngā taha e rua.
7u=-6v
Pahekotia te 2v me -8v, ka -6v.
\frac{7u}{7}=-\frac{6v}{7}
Whakawehea ngā taha e rua ki te 7.
u=-\frac{6v}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
4u+8v-2v=-3u
Tangohia te 2v mai i ngā taha e rua.
4u+6v=-3u
Pahekotia te 8v me -2v, ka 6v.
6v=-3u-4u
Tangohia te 4u mai i ngā taha e rua.
6v=-7u
Pahekotia te -3u me -4u, ka -7u.
\frac{6v}{6}=-\frac{7u}{6}
Whakawehea ngā taha e rua ki te 6.
v=-\frac{7u}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}