Whakaoti mō s
s = -\frac{9}{2} = -4\frac{1}{2} = -4.5
s = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Tohaina
Kua tāruatia ki te papatopenga
a+b=32 ab=4\times 63=252
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4s^{2}+as+bs+63. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,252 2,126 3,84 4,63 6,42 7,36 9,28 12,21 14,18
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 252.
1+252=253 2+126=128 3+84=87 4+63=67 6+42=48 7+36=43 9+28=37 12+21=33 14+18=32
Tātaihia te tapeke mō ia takirua.
a=14 b=18
Ko te otinga te takirua ka hoatu i te tapeke 32.
\left(4s^{2}+14s\right)+\left(18s+63\right)
Tuhia anō te 4s^{2}+32s+63 hei \left(4s^{2}+14s\right)+\left(18s+63\right).
2s\left(2s+7\right)+9\left(2s+7\right)
Tauwehea te 2s i te tuatahi me te 9 i te rōpū tuarua.
\left(2s+7\right)\left(2s+9\right)
Whakatauwehea atu te kīanga pātahi 2s+7 mā te whakamahi i te āhuatanga tātai tohatoha.
s=-\frac{7}{2} s=-\frac{9}{2}
Hei kimi otinga whārite, me whakaoti te 2s+7=0 me te 2s+9=0.
4s^{2}+32s+63=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-32±\sqrt{32^{2}-4\times 4\times 63}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 32 mō b, me 63 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-32±\sqrt{1024-4\times 4\times 63}}{2\times 4}
Pūrua 32.
s=\frac{-32±\sqrt{1024-16\times 63}}{2\times 4}
Whakareatia -4 ki te 4.
s=\frac{-32±\sqrt{1024-1008}}{2\times 4}
Whakareatia -16 ki te 63.
s=\frac{-32±\sqrt{16}}{2\times 4}
Tāpiri 1024 ki te -1008.
s=\frac{-32±4}{2\times 4}
Tuhia te pūtakerua o te 16.
s=\frac{-32±4}{8}
Whakareatia 2 ki te 4.
s=-\frac{28}{8}
Nā, me whakaoti te whārite s=\frac{-32±4}{8} ina he tāpiri te ±. Tāpiri -32 ki te 4.
s=-\frac{7}{2}
Whakahekea te hautanga \frac{-28}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
s=-\frac{36}{8}
Nā, me whakaoti te whārite s=\frac{-32±4}{8} ina he tango te ±. Tango 4 mai i -32.
s=-\frac{9}{2}
Whakahekea te hautanga \frac{-36}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
s=-\frac{7}{2} s=-\frac{9}{2}
Kua oti te whārite te whakatau.
4s^{2}+32s+63=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4s^{2}+32s+63-63=-63
Me tango 63 mai i ngā taha e rua o te whārite.
4s^{2}+32s=-63
Mā te tango i te 63 i a ia ake anō ka toe ko te 0.
\frac{4s^{2}+32s}{4}=-\frac{63}{4}
Whakawehea ngā taha e rua ki te 4.
s^{2}+\frac{32}{4}s=-\frac{63}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
s^{2}+8s=-\frac{63}{4}
Whakawehe 32 ki te 4.
s^{2}+8s+4^{2}=-\frac{63}{4}+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
s^{2}+8s+16=-\frac{63}{4}+16
Pūrua 4.
s^{2}+8s+16=\frac{1}{4}
Tāpiri -\frac{63}{4} ki te 16.
\left(s+4\right)^{2}=\frac{1}{4}
Tauwehea s^{2}+8s+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s+4\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
s+4=\frac{1}{2} s+4=-\frac{1}{2}
Whakarūnātia.
s=-\frac{7}{2} s=-\frac{9}{2}
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}