Tauwehe
2\left(q-5\right)\left(2q-7\right)
Aromātai
2\left(q-5\right)\left(2q-7\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(2q^{2}-17q+35\right)
Tauwehea te 2.
a+b=-17 ab=2\times 35=70
Whakaarohia te 2q^{2}-17q+35. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2q^{2}+aq+bq+35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-70 -2,-35 -5,-14 -7,-10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 70.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
Tātaihia te tapeke mō ia takirua.
a=-10 b=-7
Ko te otinga te takirua ka hoatu i te tapeke -17.
\left(2q^{2}-10q\right)+\left(-7q+35\right)
Tuhia anō te 2q^{2}-17q+35 hei \left(2q^{2}-10q\right)+\left(-7q+35\right).
2q\left(q-5\right)-7\left(q-5\right)
Tauwehea te 2q i te tuatahi me te -7 i te rōpū tuarua.
\left(q-5\right)\left(2q-7\right)
Whakatauwehea atu te kīanga pātahi q-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(q-5\right)\left(2q-7\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4q^{2}-34q+70=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
q=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 4\times 70}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-34\right)±\sqrt{1156-4\times 4\times 70}}{2\times 4}
Pūrua -34.
q=\frac{-\left(-34\right)±\sqrt{1156-16\times 70}}{2\times 4}
Whakareatia -4 ki te 4.
q=\frac{-\left(-34\right)±\sqrt{1156-1120}}{2\times 4}
Whakareatia -16 ki te 70.
q=\frac{-\left(-34\right)±\sqrt{36}}{2\times 4}
Tāpiri 1156 ki te -1120.
q=\frac{-\left(-34\right)±6}{2\times 4}
Tuhia te pūtakerua o te 36.
q=\frac{34±6}{2\times 4}
Ko te tauaro o -34 ko 34.
q=\frac{34±6}{8}
Whakareatia 2 ki te 4.
q=\frac{40}{8}
Nā, me whakaoti te whārite q=\frac{34±6}{8} ina he tāpiri te ±. Tāpiri 34 ki te 6.
q=5
Whakawehe 40 ki te 8.
q=\frac{28}{8}
Nā, me whakaoti te whārite q=\frac{34±6}{8} ina he tango te ±. Tango 6 mai i 34.
q=\frac{7}{2}
Whakahekea te hautanga \frac{28}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4q^{2}-34q+70=4\left(q-5\right)\left(q-\frac{7}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te \frac{7}{2} mō te x_{2}.
4q^{2}-34q+70=4\left(q-5\right)\times \frac{2q-7}{2}
Tango \frac{7}{2} mai i q mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4q^{2}-34q+70=2\left(q-5\right)\left(2q-7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}