Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4p^{2}=13+7
Me tāpiri te 7 ki ngā taha e rua.
4p^{2}=20
Tāpirihia te 13 ki te 7, ka 20.
p^{2}=\frac{20}{4}
Whakawehea ngā taha e rua ki te 4.
p^{2}=5
Whakawehea te 20 ki te 4, kia riro ko 5.
p=\sqrt{5} p=-\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4p^{2}-7-13=0
Tangohia te 13 mai i ngā taha e rua.
4p^{2}-20=0
Tangohia te 13 i te -7, ka -20.
p=\frac{0±\sqrt{0^{2}-4\times 4\left(-20\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 4\left(-20\right)}}{2\times 4}
Pūrua 0.
p=\frac{0±\sqrt{-16\left(-20\right)}}{2\times 4}
Whakareatia -4 ki te 4.
p=\frac{0±\sqrt{320}}{2\times 4}
Whakareatia -16 ki te -20.
p=\frac{0±8\sqrt{5}}{2\times 4}
Tuhia te pūtakerua o te 320.
p=\frac{0±8\sqrt{5}}{8}
Whakareatia 2 ki te 4.
p=\sqrt{5}
Nā, me whakaoti te whārite p=\frac{0±8\sqrt{5}}{8} ina he tāpiri te ±.
p=-\sqrt{5}
Nā, me whakaoti te whārite p=\frac{0±8\sqrt{5}}{8} ina he tango te ±.
p=\sqrt{5} p=-\sqrt{5}
Kua oti te whārite te whakatau.