Whakaoti mō p
p=\sqrt{5}\approx 2.236067977
p=-\sqrt{5}\approx -2.236067977
Pātaitai
Polynomial
4 p ^ { 2 } - 7 = 13
Tohaina
Kua tāruatia ki te papatopenga
4p^{2}=13+7
Me tāpiri te 7 ki ngā taha e rua.
4p^{2}=20
Tāpirihia te 13 ki te 7, ka 20.
p^{2}=\frac{20}{4}
Whakawehea ngā taha e rua ki te 4.
p^{2}=5
Whakawehea te 20 ki te 4, kia riro ko 5.
p=\sqrt{5} p=-\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4p^{2}-7-13=0
Tangohia te 13 mai i ngā taha e rua.
4p^{2}-20=0
Tangohia te 13 i te -7, ka -20.
p=\frac{0±\sqrt{0^{2}-4\times 4\left(-20\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 4\left(-20\right)}}{2\times 4}
Pūrua 0.
p=\frac{0±\sqrt{-16\left(-20\right)}}{2\times 4}
Whakareatia -4 ki te 4.
p=\frac{0±\sqrt{320}}{2\times 4}
Whakareatia -16 ki te -20.
p=\frac{0±8\sqrt{5}}{2\times 4}
Tuhia te pūtakerua o te 320.
p=\frac{0±8\sqrt{5}}{8}
Whakareatia 2 ki te 4.
p=\sqrt{5}
Nā, me whakaoti te whārite p=\frac{0±8\sqrt{5}}{8} ina he tāpiri te ±.
p=-\sqrt{5}
Nā, me whakaoti te whārite p=\frac{0±8\sqrt{5}}{8} ina he tango te ±.
p=\sqrt{5} p=-\sqrt{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}