Whakaoti mō n
n=-1
n = \frac{11}{4} = 2\frac{3}{4} = 2.75
Tohaina
Kua tāruatia ki te papatopenga
4n^{2}-7n-11=0
Tangohia te 11 mai i ngā taha e rua.
a+b=-7 ab=4\left(-11\right)=-44
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4n^{2}+an+bn-11. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-44 2,-22 4,-11
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -44.
1-44=-43 2-22=-20 4-11=-7
Tātaihia te tapeke mō ia takirua.
a=-11 b=4
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(4n^{2}-11n\right)+\left(4n-11\right)
Tuhia anō te 4n^{2}-7n-11 hei \left(4n^{2}-11n\right)+\left(4n-11\right).
n\left(4n-11\right)+4n-11
Whakatauwehea atu n i te 4n^{2}-11n.
\left(4n-11\right)\left(n+1\right)
Whakatauwehea atu te kīanga pātahi 4n-11 mā te whakamahi i te āhuatanga tātai tohatoha.
n=\frac{11}{4} n=-1
Hei kimi otinga whārite, me whakaoti te 4n-11=0 me te n+1=0.
4n^{2}-7n=11
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
4n^{2}-7n-11=11-11
Me tango 11 mai i ngā taha e rua o te whārite.
4n^{2}-7n-11=0
Mā te tango i te 11 i a ia ake anō ka toe ko te 0.
n=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\left(-11\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -7 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-7\right)±\sqrt{49-4\times 4\left(-11\right)}}{2\times 4}
Pūrua -7.
n=\frac{-\left(-7\right)±\sqrt{49-16\left(-11\right)}}{2\times 4}
Whakareatia -4 ki te 4.
n=\frac{-\left(-7\right)±\sqrt{49+176}}{2\times 4}
Whakareatia -16 ki te -11.
n=\frac{-\left(-7\right)±\sqrt{225}}{2\times 4}
Tāpiri 49 ki te 176.
n=\frac{-\left(-7\right)±15}{2\times 4}
Tuhia te pūtakerua o te 225.
n=\frac{7±15}{2\times 4}
Ko te tauaro o -7 ko 7.
n=\frac{7±15}{8}
Whakareatia 2 ki te 4.
n=\frac{22}{8}
Nā, me whakaoti te whārite n=\frac{7±15}{8} ina he tāpiri te ±. Tāpiri 7 ki te 15.
n=\frac{11}{4}
Whakahekea te hautanga \frac{22}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n=-\frac{8}{8}
Nā, me whakaoti te whārite n=\frac{7±15}{8} ina he tango te ±. Tango 15 mai i 7.
n=-1
Whakawehe -8 ki te 8.
n=\frac{11}{4} n=-1
Kua oti te whārite te whakatau.
4n^{2}-7n=11
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4n^{2}-7n}{4}=\frac{11}{4}
Whakawehea ngā taha e rua ki te 4.
n^{2}-\frac{7}{4}n=\frac{11}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
n^{2}-\frac{7}{4}n+\left(-\frac{7}{8}\right)^{2}=\frac{11}{4}+\left(-\frac{7}{8}\right)^{2}
Whakawehea te -\frac{7}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{8}. Nā, tāpiria te pūrua o te -\frac{7}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{7}{4}n+\frac{49}{64}=\frac{11}{4}+\frac{49}{64}
Pūruatia -\frac{7}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-\frac{7}{4}n+\frac{49}{64}=\frac{225}{64}
Tāpiri \frac{11}{4} ki te \frac{49}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{7}{8}\right)^{2}=\frac{225}{64}
Tauwehea n^{2}-\frac{7}{4}n+\frac{49}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{7}{8}\right)^{2}}=\sqrt{\frac{225}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{7}{8}=\frac{15}{8} n-\frac{7}{8}=-\frac{15}{8}
Whakarūnātia.
n=\frac{11}{4} n=-1
Me tāpiri \frac{7}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}