Tauwehe
2\left(n-5\right)\left(2n+9\right)
Aromātai
2\left(n-5\right)\left(2n+9\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(2n^{2}-n-45\right)
Tauwehea te 2.
a+b=-1 ab=2\left(-45\right)=-90
Whakaarohia te 2n^{2}-n-45. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2n^{2}+an+bn-45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=9
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(2n^{2}-10n\right)+\left(9n-45\right)
Tuhia anō te 2n^{2}-n-45 hei \left(2n^{2}-10n\right)+\left(9n-45\right).
2n\left(n-5\right)+9\left(n-5\right)
Tauwehea te 2n i te tuatahi me te 9 i te rōpū tuarua.
\left(n-5\right)\left(2n+9\right)
Whakatauwehea atu te kīanga pātahi n-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(n-5\right)\left(2n+9\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4n^{2}-2n-90=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-90\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-90\right)}}{2\times 4}
Pūrua -2.
n=\frac{-\left(-2\right)±\sqrt{4-16\left(-90\right)}}{2\times 4}
Whakareatia -4 ki te 4.
n=\frac{-\left(-2\right)±\sqrt{4+1440}}{2\times 4}
Whakareatia -16 ki te -90.
n=\frac{-\left(-2\right)±\sqrt{1444}}{2\times 4}
Tāpiri 4 ki te 1440.
n=\frac{-\left(-2\right)±38}{2\times 4}
Tuhia te pūtakerua o te 1444.
n=\frac{2±38}{2\times 4}
Ko te tauaro o -2 ko 2.
n=\frac{2±38}{8}
Whakareatia 2 ki te 4.
n=\frac{40}{8}
Nā, me whakaoti te whārite n=\frac{2±38}{8} ina he tāpiri te ±. Tāpiri 2 ki te 38.
n=5
Whakawehe 40 ki te 8.
n=-\frac{36}{8}
Nā, me whakaoti te whārite n=\frac{2±38}{8} ina he tango te ±. Tango 38 mai i 2.
n=-\frac{9}{2}
Whakahekea te hautanga \frac{-36}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4n^{2}-2n-90=4\left(n-5\right)\left(n-\left(-\frac{9}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te -\frac{9}{2} mō te x_{2}.
4n^{2}-2n-90=4\left(n-5\right)\left(n+\frac{9}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4n^{2}-2n-90=4\left(n-5\right)\times \frac{2n+9}{2}
Tāpiri \frac{9}{2} ki te n mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4n^{2}-2n-90=2\left(n-5\right)\left(2n+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}