Tauwehe
4m\left(m-5\right)\left(m-3\right)
Aromātai
4m\left(m-5\right)\left(m-3\right)
Tohaina
Kua tāruatia ki te papatopenga
4\left(m^{3}-8m^{2}+15m\right)
Tauwehea te 4.
m\left(m^{2}-8m+15\right)
Whakaarohia te m^{3}-8m^{2}+15m. Tauwehea te m.
a+b=-8 ab=1\times 15=15
Whakaarohia te m^{2}-8m+15. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei m^{2}+am+bm+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-15 -3,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 15.
-1-15=-16 -3-5=-8
Tātaihia te tapeke mō ia takirua.
a=-5 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(m^{2}-5m\right)+\left(-3m+15\right)
Tuhia anō te m^{2}-8m+15 hei \left(m^{2}-5m\right)+\left(-3m+15\right).
m\left(m-5\right)-3\left(m-5\right)
Tauwehea te m i te tuatahi me te -3 i te rōpū tuarua.
\left(m-5\right)\left(m-3\right)
Whakatauwehea atu te kīanga pātahi m-5 mā te whakamahi i te āhuatanga tātai tohatoha.
4m\left(m-5\right)\left(m-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}