Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4m^{2}-36m+26=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 4\times 26}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -36 mō b, me 26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-36\right)±\sqrt{1296-4\times 4\times 26}}{2\times 4}
Pūrua -36.
m=\frac{-\left(-36\right)±\sqrt{1296-16\times 26}}{2\times 4}
Whakareatia -4 ki te 4.
m=\frac{-\left(-36\right)±\sqrt{1296-416}}{2\times 4}
Whakareatia -16 ki te 26.
m=\frac{-\left(-36\right)±\sqrt{880}}{2\times 4}
Tāpiri 1296 ki te -416.
m=\frac{-\left(-36\right)±4\sqrt{55}}{2\times 4}
Tuhia te pūtakerua o te 880.
m=\frac{36±4\sqrt{55}}{2\times 4}
Ko te tauaro o -36 ko 36.
m=\frac{36±4\sqrt{55}}{8}
Whakareatia 2 ki te 4.
m=\frac{4\sqrt{55}+36}{8}
Nā, me whakaoti te whārite m=\frac{36±4\sqrt{55}}{8} ina he tāpiri te ±. Tāpiri 36 ki te 4\sqrt{55}.
m=\frac{\sqrt{55}+9}{2}
Whakawehe 36+4\sqrt{55} ki te 8.
m=\frac{36-4\sqrt{55}}{8}
Nā, me whakaoti te whārite m=\frac{36±4\sqrt{55}}{8} ina he tango te ±. Tango 4\sqrt{55} mai i 36.
m=\frac{9-\sqrt{55}}{2}
Whakawehe 36-4\sqrt{55} ki te 8.
m=\frac{\sqrt{55}+9}{2} m=\frac{9-\sqrt{55}}{2}
Kua oti te whārite te whakatau.
4m^{2}-36m+26=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
4m^{2}-36m+26-26=-26
Me tango 26 mai i ngā taha e rua o te whārite.
4m^{2}-36m=-26
Mā te tango i te 26 i a ia ake anō ka toe ko te 0.
\frac{4m^{2}-36m}{4}=-\frac{26}{4}
Whakawehea ngā taha e rua ki te 4.
m^{2}+\left(-\frac{36}{4}\right)m=-\frac{26}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
m^{2}-9m=-\frac{26}{4}
Whakawehe -36 ki te 4.
m^{2}-9m=-\frac{13}{2}
Whakahekea te hautanga \frac{-26}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m^{2}-9m+\left(-\frac{9}{2}\right)^{2}=-\frac{13}{2}+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-9m+\frac{81}{4}=-\frac{13}{2}+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-9m+\frac{81}{4}=\frac{55}{4}
Tāpiri -\frac{13}{2} ki te \frac{81}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(m-\frac{9}{2}\right)^{2}=\frac{55}{4}
Tauwehea m^{2}-9m+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{9}{2}\right)^{2}}=\sqrt{\frac{55}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{9}{2}=\frac{\sqrt{55}}{2} m-\frac{9}{2}=-\frac{\sqrt{55}}{2}
Whakarūnātia.
m=\frac{\sqrt{55}+9}{2} m=\frac{9-\sqrt{55}}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.