Tauwehe
\left(2m-3\right)\left(2m+5\right)
Aromātai
\left(2m-3\right)\left(2m+5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=4 ab=4\left(-15\right)=-60
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4m^{2}+am+bm-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Tātaihia te tapeke mō ia takirua.
a=-6 b=10
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(4m^{2}-6m\right)+\left(10m-15\right)
Tuhia anō te 4m^{2}+4m-15 hei \left(4m^{2}-6m\right)+\left(10m-15\right).
2m\left(2m-3\right)+5\left(2m-3\right)
Tauwehea te 2m i te tuatahi me te 5 i te rōpū tuarua.
\left(2m-3\right)\left(2m+5\right)
Whakatauwehea atu te kīanga pātahi 2m-3 mā te whakamahi i te āhuatanga tātai tohatoha.
4m^{2}+4m-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-4±\sqrt{4^{2}-4\times 4\left(-15\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-4±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Pūrua 4.
m=\frac{-4±\sqrt{16-16\left(-15\right)}}{2\times 4}
Whakareatia -4 ki te 4.
m=\frac{-4±\sqrt{16+240}}{2\times 4}
Whakareatia -16 ki te -15.
m=\frac{-4±\sqrt{256}}{2\times 4}
Tāpiri 16 ki te 240.
m=\frac{-4±16}{2\times 4}
Tuhia te pūtakerua o te 256.
m=\frac{-4±16}{8}
Whakareatia 2 ki te 4.
m=\frac{12}{8}
Nā, me whakaoti te whārite m=\frac{-4±16}{8} ina he tāpiri te ±. Tāpiri -4 ki te 16.
m=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
m=-\frac{20}{8}
Nā, me whakaoti te whārite m=\frac{-4±16}{8} ina he tango te ±. Tango 16 mai i -4.
m=-\frac{5}{2}
Whakahekea te hautanga \frac{-20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4m^{2}+4m-15=4\left(m-\frac{3}{2}\right)\left(m-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
4m^{2}+4m-15=4\left(m-\frac{3}{2}\right)\left(m+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4m^{2}+4m-15=4\times \frac{2m-3}{2}\left(m+\frac{5}{2}\right)
Tango \frac{3}{2} mai i m mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4m^{2}+4m-15=4\times \frac{2m-3}{2}\times \frac{2m+5}{2}
Tāpiri \frac{5}{2} ki te m mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4m^{2}+4m-15=4\times \frac{\left(2m-3\right)\left(2m+5\right)}{2\times 2}
Whakareatia \frac{2m-3}{2} ki te \frac{2m+5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4m^{2}+4m-15=4\times \frac{\left(2m-3\right)\left(2m+5\right)}{4}
Whakareatia 2 ki te 2.
4m^{2}+4m-15=\left(2m-3\right)\left(2m+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}