Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(k^{2}-2k\right)
Tauwehea te 4.
k\left(k-2\right)
Whakaarohia te k^{2}-2k. Tauwehea te k.
4k\left(k-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4k^{2}-8k=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-8\right)±8}{2\times 4}
Tuhia te pūtakerua o te \left(-8\right)^{2}.
k=\frac{8±8}{2\times 4}
Ko te tauaro o -8 ko 8.
k=\frac{8±8}{8}
Whakareatia 2 ki te 4.
k=\frac{16}{8}
Nā, me whakaoti te whārite k=\frac{8±8}{8} ina he tāpiri te ±. Tāpiri 8 ki te 8.
k=2
Whakawehe 16 ki te 8.
k=\frac{0}{8}
Nā, me whakaoti te whārite k=\frac{8±8}{8} ina he tango te ±. Tango 8 mai i 8.
k=0
Whakawehe 0 ki te 8.
4k^{2}-8k=4\left(k-2\right)k
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te 0 mō te x_{2}.