Tauwehe
\left(2h+1\right)\left(2h+3\right)
Aromātai
\left(2h+1\right)\left(2h+3\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=8 ab=4\times 3=12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4h^{2}+ah+bh+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=2 b=6
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(4h^{2}+2h\right)+\left(6h+3\right)
Tuhia anō te 4h^{2}+8h+3 hei \left(4h^{2}+2h\right)+\left(6h+3\right).
2h\left(2h+1\right)+3\left(2h+1\right)
Tauwehea te 2h i te tuatahi me te 3 i te rōpū tuarua.
\left(2h+1\right)\left(2h+3\right)
Whakatauwehea atu te kīanga pātahi 2h+1 mā te whakamahi i te āhuatanga tātai tohatoha.
4h^{2}+8h+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
h=\frac{-8±\sqrt{8^{2}-4\times 4\times 3}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
h=\frac{-8±\sqrt{64-4\times 4\times 3}}{2\times 4}
Pūrua 8.
h=\frac{-8±\sqrt{64-16\times 3}}{2\times 4}
Whakareatia -4 ki te 4.
h=\frac{-8±\sqrt{64-48}}{2\times 4}
Whakareatia -16 ki te 3.
h=\frac{-8±\sqrt{16}}{2\times 4}
Tāpiri 64 ki te -48.
h=\frac{-8±4}{2\times 4}
Tuhia te pūtakerua o te 16.
h=\frac{-8±4}{8}
Whakareatia 2 ki te 4.
h=-\frac{4}{8}
Nā, me whakaoti te whārite h=\frac{-8±4}{8} ina he tāpiri te ±. Tāpiri -8 ki te 4.
h=-\frac{1}{2}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
h=-\frac{12}{8}
Nā, me whakaoti te whārite h=\frac{-8±4}{8} ina he tango te ±. Tango 4 mai i -8.
h=-\frac{3}{2}
Whakahekea te hautanga \frac{-12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
4h^{2}+8h+3=4\left(h-\left(-\frac{1}{2}\right)\right)\left(h-\left(-\frac{3}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{2} mō te x_{1} me te -\frac{3}{2} mō te x_{2}.
4h^{2}+8h+3=4\left(h+\frac{1}{2}\right)\left(h+\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4h^{2}+8h+3=4\times \frac{2h+1}{2}\left(h+\frac{3}{2}\right)
Tāpiri \frac{1}{2} ki te h mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4h^{2}+8h+3=4\times \frac{2h+1}{2}\times \frac{2h+3}{2}
Tāpiri \frac{3}{2} ki te h mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4h^{2}+8h+3=4\times \frac{\left(2h+1\right)\left(2h+3\right)}{2\times 2}
Whakareatia \frac{2h+1}{2} ki te \frac{2h+3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4h^{2}+8h+3=4\times \frac{\left(2h+1\right)\left(2h+3\right)}{4}
Whakareatia 2 ki te 2.
4h^{2}+8h+3=\left(2h+1\right)\left(2h+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}