Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=36 ab=4\times 81=324
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4d^{2}+ad+bd+81. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,324 2,162 3,108 4,81 6,54 9,36 12,27 18,18
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 324.
1+324=325 2+162=164 3+108=111 4+81=85 6+54=60 9+36=45 12+27=39 18+18=36
Tātaihia te tapeke mō ia takirua.
a=18 b=18
Ko te otinga te takirua ka hoatu i te tapeke 36.
\left(4d^{2}+18d\right)+\left(18d+81\right)
Tuhia anō te 4d^{2}+36d+81 hei \left(4d^{2}+18d\right)+\left(18d+81\right).
2d\left(2d+9\right)+9\left(2d+9\right)
Tauwehea te 2d i te tuatahi me te 9 i te rōpū tuarua.
\left(2d+9\right)\left(2d+9\right)
Whakatauwehea atu te kīanga pātahi 2d+9 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2d+9\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(4d^{2}+36d+81)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(4,36,81)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{4d^{2}}=2d
Kimihia te pūtakerua o te kīanga tau ārahi, 4d^{2}.
\sqrt{81}=9
Kimihia te pūtakerua o te kīanga tau autō, 81.
\left(2d+9\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
4d^{2}+36d+81=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
d=\frac{-36±\sqrt{36^{2}-4\times 4\times 81}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-36±\sqrt{1296-4\times 4\times 81}}{2\times 4}
Pūrua 36.
d=\frac{-36±\sqrt{1296-16\times 81}}{2\times 4}
Whakareatia -4 ki te 4.
d=\frac{-36±\sqrt{1296-1296}}{2\times 4}
Whakareatia -16 ki te 81.
d=\frac{-36±\sqrt{0}}{2\times 4}
Tāpiri 1296 ki te -1296.
d=\frac{-36±0}{2\times 4}
Tuhia te pūtakerua o te 0.
d=\frac{-36±0}{8}
Whakareatia 2 ki te 4.
4d^{2}+36d+81=4\left(d-\left(-\frac{9}{2}\right)\right)\left(d-\left(-\frac{9}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{9}{2} mō te x_{1} me te -\frac{9}{2} mō te x_{2}.
4d^{2}+36d+81=4\left(d+\frac{9}{2}\right)\left(d+\frac{9}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4d^{2}+36d+81=4\times \frac{2d+9}{2}\left(d+\frac{9}{2}\right)
Tāpiri \frac{9}{2} ki te d mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4d^{2}+36d+81=4\times \frac{2d+9}{2}\times \frac{2d+9}{2}
Tāpiri \frac{9}{2} ki te d mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4d^{2}+36d+81=4\times \frac{\left(2d+9\right)\left(2d+9\right)}{2\times 2}
Whakareatia \frac{2d+9}{2} ki te \frac{2d+9}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4d^{2}+36d+81=4\times \frac{\left(2d+9\right)\left(2d+9\right)}{4}
Whakareatia 2 ki te 2.
4d^{2}+36d+81=\left(2d+9\right)\left(2d+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.