Tauwehe
\left(c-1\right)\left(4c-5\right)
Aromātai
\left(c-1\right)\left(4c-5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-9 ab=4\times 5=20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4c^{2}+ac+bc+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-20 -2,-10 -4,-5
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 20.
-1-20=-21 -2-10=-12 -4-5=-9
Tātaihia te tapeke mō ia takirua.
a=-5 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(4c^{2}-5c\right)+\left(-4c+5\right)
Tuhia anō te 4c^{2}-9c+5 hei \left(4c^{2}-5c\right)+\left(-4c+5\right).
c\left(4c-5\right)-\left(4c-5\right)
Tauwehea te c i te tuatahi me te -1 i te rōpū tuarua.
\left(4c-5\right)\left(c-1\right)
Whakatauwehea atu te kīanga pātahi 4c-5 mā te whakamahi i te āhuatanga tātai tohatoha.
4c^{2}-9c+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 4\times 5}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-\left(-9\right)±\sqrt{81-4\times 4\times 5}}{2\times 4}
Pūrua -9.
c=\frac{-\left(-9\right)±\sqrt{81-16\times 5}}{2\times 4}
Whakareatia -4 ki te 4.
c=\frac{-\left(-9\right)±\sqrt{81-80}}{2\times 4}
Whakareatia -16 ki te 5.
c=\frac{-\left(-9\right)±\sqrt{1}}{2\times 4}
Tāpiri 81 ki te -80.
c=\frac{-\left(-9\right)±1}{2\times 4}
Tuhia te pūtakerua o te 1.
c=\frac{9±1}{2\times 4}
Ko te tauaro o -9 ko 9.
c=\frac{9±1}{8}
Whakareatia 2 ki te 4.
c=\frac{10}{8}
Nā, me whakaoti te whārite c=\frac{9±1}{8} ina he tāpiri te ±. Tāpiri 9 ki te 1.
c=\frac{5}{4}
Whakahekea te hautanga \frac{10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
c=\frac{8}{8}
Nā, me whakaoti te whārite c=\frac{9±1}{8} ina he tango te ±. Tango 1 mai i 9.
c=1
Whakawehe 8 ki te 8.
4c^{2}-9c+5=4\left(c-\frac{5}{4}\right)\left(c-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{4} mō te x_{1} me te 1 mō te x_{2}.
4c^{2}-9c+5=4\times \frac{4c-5}{4}\left(c-1\right)
Tango \frac{5}{4} mai i c mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4c^{2}-9c+5=\left(4c-5\right)\left(c-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}