Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4b-3a\left(\frac{4}{a}+\frac{6ba}{a}-\frac{2b}{a}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6b ki te \frac{a}{a}.
4b-3a\left(\frac{4+6ba}{a}-\frac{2b}{a}\right)
Tā te mea he rite te tauraro o \frac{4}{a} me \frac{6ba}{a}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
4b-3a\times \frac{4+6ba-2b}{a}
Tā te mea he rite te tauraro o \frac{4+6ba}{a} me \frac{2b}{a}, me tango rāua mā te tango i ō raua taurunga.
4b-\frac{3\left(4+6ba-2b\right)}{a}a
Tuhia te 3\times \frac{4+6ba-2b}{a} hei hautanga kotahi.
4b-\frac{12+18ba-6b}{a}a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4+6ba-2b.
4b-\left(12+18ba-6b\right)
Me whakakore te a me te a.
4b-12-18ba-\left(-6b\right)
Hei kimi i te tauaro o 12+18ba-6b, kimihia te tauaro o ia taurangi.
4b-12-18ba+6b
Ko te tauaro o -6b ko 6b.
10b-12-18ba
Pahekotia te 4b me 6b, ka 10b.
4b-3a\left(\frac{4}{a}+\frac{6ba}{a}-\frac{2b}{a}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6b ki te \frac{a}{a}.
4b-3a\left(\frac{4+6ba}{a}-\frac{2b}{a}\right)
Tā te mea he rite te tauraro o \frac{4}{a} me \frac{6ba}{a}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
4b-3a\times \frac{4+6ba-2b}{a}
Tā te mea he rite te tauraro o \frac{4+6ba}{a} me \frac{2b}{a}, me tango rāua mā te tango i ō raua taurunga.
4b-\frac{3\left(4+6ba-2b\right)}{a}a
Tuhia te 3\times \frac{4+6ba-2b}{a} hei hautanga kotahi.
4b-\frac{12+18ba-6b}{a}a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4+6ba-2b.
4b-\left(12+18ba-6b\right)
Me whakakore te a me te a.
4b-12-18ba-\left(-6b\right)
Hei kimi i te tauaro o 12+18ba-6b, kimihia te tauaro o ia taurangi.
4b-12-18ba+6b
Ko te tauaro o -6b ko 6b.
10b-12-18ba
Pahekotia te 4b me 6b, ka 10b.