Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2b-11\right)\left(2b+11\right)=0
Whakaarohia te 4b^{2}-121. Tuhia anō te 4b^{2}-121 hei \left(2b\right)^{2}-11^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{11}{2} b=-\frac{11}{2}
Hei kimi otinga whārite, me whakaoti te 2b-11=0 me te 2b+11=0.
4b^{2}=121
Me tāpiri te 121 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
b^{2}=\frac{121}{4}
Whakawehea ngā taha e rua ki te 4.
b=\frac{11}{2} b=-\frac{11}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
4b^{2}-121=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\times 4\left(-121\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 0 mō b, me -121 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 4\left(-121\right)}}{2\times 4}
Pūrua 0.
b=\frac{0±\sqrt{-16\left(-121\right)}}{2\times 4}
Whakareatia -4 ki te 4.
b=\frac{0±\sqrt{1936}}{2\times 4}
Whakareatia -16 ki te -121.
b=\frac{0±44}{2\times 4}
Tuhia te pūtakerua o te 1936.
b=\frac{0±44}{8}
Whakareatia 2 ki te 4.
b=\frac{11}{2}
Nā, me whakaoti te whārite b=\frac{0±44}{8} ina he tāpiri te ±. Whakahekea te hautanga \frac{44}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
b=-\frac{11}{2}
Nā, me whakaoti te whārite b=\frac{0±44}{8} ina he tango te ±. Whakahekea te hautanga \frac{-44}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
b=\frac{11}{2} b=-\frac{11}{2}
Kua oti te whārite te whakatau.