Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=-\frac{2x-b}{4\left(x+4\right)}\text{, }&x\neq -4\\a\in \mathrm{C}\text{, }&x=-4\text{ and }b=-8\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=-\frac{2x-b}{4\left(x+4\right)}\text{, }&x\neq -4\\a\in \mathrm{R}\text{, }&x=-4\text{ and }b=-8\end{matrix}\right.
Whakaoti mō b
b=2\left(2ax+x+8a\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
4ax-b+16a=-2x
Me tāpiri te 16a ki ngā taha e rua.
4ax+16a=-2x+b
Me tāpiri te b ki ngā taha e rua.
\left(4x+16\right)a=-2x+b
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(4x+16\right)a=b-2x
He hanga arowhānui tō te whārite.
\frac{\left(4x+16\right)a}{4x+16}=\frac{b-2x}{4x+16}
Whakawehea ngā taha e rua ki te 4x+16.
a=\frac{b-2x}{4x+16}
Mā te whakawehe ki te 4x+16 ka wetekia te whakareanga ki te 4x+16.
a=\frac{b-2x}{4\left(x+4\right)}
Whakawehe -2x+b ki te 4x+16.
4ax-b+16a=-2x
Me tāpiri te 16a ki ngā taha e rua.
4ax+16a=-2x+b
Me tāpiri te b ki ngā taha e rua.
\left(4x+16\right)a=-2x+b
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(4x+16\right)a=b-2x
He hanga arowhānui tō te whārite.
\frac{\left(4x+16\right)a}{4x+16}=\frac{b-2x}{4x+16}
Whakawehea ngā taha e rua ki te 4x+16.
a=\frac{b-2x}{4x+16}
Mā te whakawehe ki te 4x+16 ka wetekia te whakareanga ki te 4x+16.
a=\frac{b-2x}{4\left(x+4\right)}
Whakawehe -2x+b ki te 4x+16.
-b=-16a-2x-4ax
Tangohia te 4ax mai i ngā taha e rua.
-b=-4ax-2x-16a
He hanga arowhānui tō te whārite.
\frac{-b}{-1}=\frac{-4ax-2x-16a}{-1}
Whakawehea ngā taha e rua ki te -1.
b=\frac{-4ax-2x-16a}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
b=4ax+2x+16a
Whakawehe -16a-2x-4ax ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}