Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4a^{2}-12a-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
a=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-9\right)}}{2\times 4}
Pūrua -12.
a=\frac{-\left(-12\right)±\sqrt{144-16\left(-9\right)}}{2\times 4}
Whakareatia -4 ki te 4.
a=\frac{-\left(-12\right)±\sqrt{144+144}}{2\times 4}
Whakareatia -16 ki te -9.
a=\frac{-\left(-12\right)±\sqrt{288}}{2\times 4}
Tāpiri 144 ki te 144.
a=\frac{-\left(-12\right)±12\sqrt{2}}{2\times 4}
Tuhia te pūtakerua o te 288.
a=\frac{12±12\sqrt{2}}{2\times 4}
Ko te tauaro o -12 ko 12.
a=\frac{12±12\sqrt{2}}{8}
Whakareatia 2 ki te 4.
a=\frac{12\sqrt{2}+12}{8}
Nā, me whakaoti te whārite a=\frac{12±12\sqrt{2}}{8} ina he tāpiri te ±. Tāpiri 12 ki te 12\sqrt{2}.
a=\frac{3\sqrt{2}+3}{2}
Whakawehe 12+12\sqrt{2} ki te 8.
a=\frac{12-12\sqrt{2}}{8}
Nā, me whakaoti te whārite a=\frac{12±12\sqrt{2}}{8} ina he tango te ±. Tango 12\sqrt{2} mai i 12.
a=\frac{3-3\sqrt{2}}{2}
Whakawehe 12-12\sqrt{2} ki te 8.
4a^{2}-12a-9=4\left(a-\frac{3\sqrt{2}+3}{2}\right)\left(a-\frac{3-3\sqrt{2}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3+3\sqrt{2}}{2} mō te x_{1} me te \frac{3-3\sqrt{2}}{2} mō te x_{2}.