Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(4-x^{2}+5x)
Pahekotia te 3x me 2x, ka 5x.
-x^{2}+5x+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 4}}{2\left(-1\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25+4\times 4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-5±\sqrt{25+16}}{2\left(-1\right)}
Whakareatia 4 ki te 4.
x=\frac{-5±\sqrt{41}}{2\left(-1\right)}
Tāpiri 25 ki te 16.
x=\frac{-5±\sqrt{41}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{41}-5}{-2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{41}}{-2} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{41}.
x=\frac{5-\sqrt{41}}{2}
Whakawehe -5+\sqrt{41} ki te -2.
x=\frac{-\sqrt{41}-5}{-2}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{41}}{-2} ina he tango te ±. Tango \sqrt{41} mai i -5.
x=\frac{\sqrt{41}+5}{2}
Whakawehe -5-\sqrt{41} ki te -2.
-x^{2}+5x+4=-\left(x-\frac{5-\sqrt{41}}{2}\right)\left(x-\frac{\sqrt{41}+5}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5-\sqrt{41}}{2} mō te x_{1} me te \frac{5+\sqrt{41}}{2} mō te x_{2}.
4-x^{2}+5x
Pahekotia te 3x me 2x, ka 5x.