Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-7x^{2}-13x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-7\right)\times 4}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, -13 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-7\right)\times 4}}{2\left(-7\right)}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169+28\times 4}}{2\left(-7\right)}
Whakareatia -4 ki te -7.
x=\frac{-\left(-13\right)±\sqrt{169+112}}{2\left(-7\right)}
Whakareatia 28 ki te 4.
x=\frac{-\left(-13\right)±\sqrt{281}}{2\left(-7\right)}
Tāpiri 169 ki te 112.
x=\frac{13±\sqrt{281}}{2\left(-7\right)}
Ko te tauaro o -13 ko 13.
x=\frac{13±\sqrt{281}}{-14}
Whakareatia 2 ki te -7.
x=\frac{\sqrt{281}+13}{-14}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{281}}{-14} ina he tāpiri te ±. Tāpiri 13 ki te \sqrt{281}.
x=\frac{-\sqrt{281}-13}{14}
Whakawehe 13+\sqrt{281} ki te -14.
x=\frac{13-\sqrt{281}}{-14}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{281}}{-14} ina he tango te ±. Tango \sqrt{281} mai i 13.
x=\frac{\sqrt{281}-13}{14}
Whakawehe 13-\sqrt{281} ki te -14.
x=\frac{-\sqrt{281}-13}{14} x=\frac{\sqrt{281}-13}{14}
Kua oti te whārite te whakatau.
-7x^{2}-13x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-7x^{2}-13x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
-7x^{2}-13x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{-7x^{2}-13x}{-7}=-\frac{4}{-7}
Whakawehea ngā taha e rua ki te -7.
x^{2}+\left(-\frac{13}{-7}\right)x=-\frac{4}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
x^{2}+\frac{13}{7}x=-\frac{4}{-7}
Whakawehe -13 ki te -7.
x^{2}+\frac{13}{7}x=\frac{4}{7}
Whakawehe -4 ki te -7.
x^{2}+\frac{13}{7}x+\left(\frac{13}{14}\right)^{2}=\frac{4}{7}+\left(\frac{13}{14}\right)^{2}
Whakawehea te \frac{13}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{14}. Nā, tāpiria te pūrua o te \frac{13}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{13}{7}x+\frac{169}{196}=\frac{4}{7}+\frac{169}{196}
Pūruatia \frac{13}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{13}{7}x+\frac{169}{196}=\frac{281}{196}
Tāpiri \frac{4}{7} ki te \frac{169}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{13}{14}\right)^{2}=\frac{281}{196}
Tauwehea x^{2}+\frac{13}{7}x+\frac{169}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{14}\right)^{2}}=\sqrt{\frac{281}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{13}{14}=\frac{\sqrt{281}}{14} x+\frac{13}{14}=-\frac{\sqrt{281}}{14}
Whakarūnātia.
x=\frac{\sqrt{281}-13}{14} x=\frac{-\sqrt{281}-13}{14}
Me tango \frac{13}{14} mai i ngā taha e rua o te whārite.