Whakaoti mō x
x=1
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(3x+1\right)\times 4-8=3x^{2}+5
Tē taea kia ōrite te tāupe x ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+1.
12x+4-8=3x^{2}+5
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+1 ki te 4.
12x-4=3x^{2}+5
Tangohia te 8 i te 4, ka -4.
12x-4-3x^{2}=5
Tangohia te 3x^{2} mai i ngā taha e rua.
12x-4-3x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
12x-9-3x^{2}=0
Tangohia te 5 i te -4, ka -9.
4x-3-x^{2}=0
Whakawehea ngā taha e rua ki te 3.
-x^{2}+4x-3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=4 ab=-\left(-3\right)=3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+3x\right)+\left(x-3\right)
Tuhia anō te -x^{2}+4x-3 hei \left(-x^{2}+3x\right)+\left(x-3\right).
-x\left(x-3\right)+x-3
Whakatauwehea atu -x i te -x^{2}+3x.
\left(x-3\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x+1=0.
\left(3x+1\right)\times 4-8=3x^{2}+5
Tē taea kia ōrite te tāupe x ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+1.
12x+4-8=3x^{2}+5
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+1 ki te 4.
12x-4=3x^{2}+5
Tangohia te 8 i te 4, ka -4.
12x-4-3x^{2}=5
Tangohia te 3x^{2} mai i ngā taha e rua.
12x-4-3x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
12x-9-3x^{2}=0
Tangohia te 5 i te -4, ka -9.
-3x^{2}+12x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-9\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 12 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-9\right)}}{2\left(-3\right)}
Pūrua 12.
x=\frac{-12±\sqrt{144+12\left(-9\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-12±\sqrt{144-108}}{2\left(-3\right)}
Whakareatia 12 ki te -9.
x=\frac{-12±\sqrt{36}}{2\left(-3\right)}
Tāpiri 144 ki te -108.
x=\frac{-12±6}{2\left(-3\right)}
Tuhia te pūtakerua o te 36.
x=\frac{-12±6}{-6}
Whakareatia 2 ki te -3.
x=-\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{-12±6}{-6} ina he tāpiri te ±. Tāpiri -12 ki te 6.
x=1
Whakawehe -6 ki te -6.
x=-\frac{18}{-6}
Nā, me whakaoti te whārite x=\frac{-12±6}{-6} ina he tango te ±. Tango 6 mai i -12.
x=3
Whakawehe -18 ki te -6.
x=1 x=3
Kua oti te whārite te whakatau.
\left(3x+1\right)\times 4-8=3x^{2}+5
Tē taea kia ōrite te tāupe x ki -\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3x+1.
12x+4-8=3x^{2}+5
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+1 ki te 4.
12x-4=3x^{2}+5
Tangohia te 8 i te 4, ka -4.
12x-4-3x^{2}=5
Tangohia te 3x^{2} mai i ngā taha e rua.
12x-3x^{2}=5+4
Me tāpiri te 4 ki ngā taha e rua.
12x-3x^{2}=9
Tāpirihia te 5 ki te 4, ka 9.
-3x^{2}+12x=9
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+12x}{-3}=\frac{9}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{12}{-3}x=\frac{9}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-4x=\frac{9}{-3}
Whakawehe 12 ki te -3.
x^{2}-4x=-3
Whakawehe 9 ki te -3.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-3+4
Pūrua -2.
x^{2}-4x+4=1
Tāpiri -3 ki te 4.
\left(x-2\right)^{2}=1
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=1 x-2=-1
Whakarūnātia.
x=3 x=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}