Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
40-2\left(7-3x\right)=30-\left(3-7x\right)-5\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10,2.
40-14+6x=30-\left(3-7x\right)-5\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 7-3x.
26+6x=30-\left(3-7x\right)-5\left(x+1\right)
Tangohia te 14 i te 40, ka 26.
26+6x=30-3-\left(-7x\right)-5\left(x+1\right)
Hei kimi i te tauaro o 3-7x, kimihia te tauaro o ia taurangi.
26+6x=30-3+7x-5\left(x+1\right)
Ko te tauaro o -7x ko 7x.
26+6x=27+7x-5\left(x+1\right)
Tangohia te 3 i te 30, ka 27.
26+6x=27+7x-5x-5
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+1.
26+6x=27+2x-5
Pahekotia te 7x me -5x, ka 2x.
26+6x=22+2x
Tangohia te 5 i te 27, ka 22.
26+6x-2x=22
Tangohia te 2x mai i ngā taha e rua.
26+4x=22
Pahekotia te 6x me -2x, ka 4x.
4x=22-26
Tangohia te 26 mai i ngā taha e rua.
4x=-4
Tangohia te 26 i te 22, ka -4.
x=\frac{-4}{4}
Whakawehea ngā taha e rua ki te 4.
x=-1
Whakawehea te -4 ki te 4, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}