Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
48-2\left(10x+1\right)=36-6\times 3x+3x
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 6,2,4.
48-20x-2=36-6\times 3x+3x
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 10x+1.
46-20x=36-6\times 3x+3x
Tangohia te 2 i te 48, ka 46.
46-20x=36-18x+3x
Whakareatia te -6 ki te 3, ka -18.
46-20x=36-15x
Pahekotia te -18x me 3x, ka -15x.
46-20x+15x=36
Me tāpiri te 15x ki ngā taha e rua.
46-5x=36
Pahekotia te -20x me 15x, ka -5x.
-5x=36-46
Tangohia te 46 mai i ngā taha e rua.
-5x=-10
Tangohia te 46 i te 36, ka -10.
x=\frac{-10}{-5}
Whakawehea ngā taha e rua ki te -5.
x=2
Whakawehea te -10 ki te -5, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}