Whakaoti mō x
x<\frac{9}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x^{2}-6x+9\right)-\left(2x-5\right)^{2}>2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
4x^{2}-24x+36-\left(2x-5\right)^{2}>2
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}-6x+9.
4x^{2}-24x+36-\left(4x^{2}-20x+25\right)>2
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-24x+36-4x^{2}+20x-25>2
Hei kimi i te tauaro o 4x^{2}-20x+25, kimihia te tauaro o ia taurangi.
-24x+36+20x-25>2
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
-4x+36-25>2
Pahekotia te -24x me 20x, ka -4x.
-4x+11>2
Tangohia te 25 i te 36, ka 11.
-4x>2-11
Tangohia te 11 mai i ngā taha e rua.
-4x>-9
Tangohia te 11 i te 2, ka -9.
x<\frac{-9}{-4}
Whakawehea ngā taha e rua ki te -4. I te mea he tōraro a -4, ka huri te ahunga koreōrite.
x<\frac{9}{4}
Ka taea te hautanga \frac{-9}{-4} te whakamāmā ki te \frac{9}{4} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}