Whakaoti mō x
x=-\frac{\sqrt{3}}{2}-1\approx -1.866025404
x=\frac{\sqrt{3}}{2}-1\approx -0.133974596
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x^{2}+2x\right)x\left(x+2\right)+1=-5x\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x\left(x+2\right).
\left(4x^{2}+8x\right)x\left(x+2\right)+1=-5x\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}+2x.
\left(4x^{3}+8x^{2}\right)\left(x+2\right)+1=-5x\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4x^{2}+8x ki te x.
4x^{4}+16x^{3}+16x^{2}+1=-5x\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x^{3}+8x^{2} ki te x+2 ka whakakotahi i ngā kupu rite.
4x^{4}+16x^{3}+16x^{2}+1=-5x^{2}-10x
Whakamahia te āhuatanga tohatoha hei whakarea te -5x ki te x+2.
4x^{4}+16x^{3}+16x^{2}+1+5x^{2}=-10x
Me tāpiri te 5x^{2} ki ngā taha e rua.
4x^{4}+16x^{3}+21x^{2}+1=-10x
Pahekotia te 16x^{2} me 5x^{2}, ka 21x^{2}.
4x^{4}+16x^{3}+21x^{2}+1+10x=0
Me tāpiri te 10x ki ngā taha e rua.
4x^{4}+16x^{3}+21x^{2}+10x+1=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{1}{4},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 1, ā, ka wehea e q te whakarea arahanga 4. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
4x^{3}+12x^{2}+9x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 4x^{4}+16x^{3}+21x^{2}+10x+1 ki te x+1, kia riro ko 4x^{3}+12x^{2}+9x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
±\frac{1}{4},±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 1, ā, ka wehea e q te whakarea arahanga 4. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
4x^{2}+8x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 4x^{3}+12x^{2}+9x+1 ki te x+1, kia riro ko 4x^{2}+8x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-8±\sqrt{8^{2}-4\times 4\times 1}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te 8 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-8±4\sqrt{3}}{8}
Mahia ngā tātaitai.
x=-\frac{\sqrt{3}}{2}-1 x=\frac{\sqrt{3}}{2}-1
Whakaotia te whārite 4x^{2}+8x+1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-1 x=-\frac{\sqrt{3}}{2}-1 x=\frac{\sqrt{3}}{2}-1
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}