Whakaoti mō x (complex solution)
x=\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx 2.716341211i
x=-\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx -0-2.716341211i
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0.212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0.212547035
Whakaoti mō x
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0.212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0.212547035
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x^{2}+4 ki te 2x^{2}+1 ka whakakotahi i ngā kupu rite.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Tangohia te 5x^{4} mai i ngā taha e rua.
3x^{4}+12x^{2}+4=-10x^{2}+5
Pahekotia te 8x^{4} me -5x^{4}, ka 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Me tāpiri te 10x^{2} ki ngā taha e rua.
3x^{4}+22x^{2}+4=5
Pahekotia te 12x^{2} me 10x^{2}, ka 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Tangohia te 5 mai i ngā taha e rua.
3x^{4}+22x^{2}-1=0
Tangohia te 5 i te 4, ka -1.
3t^{2}+22t-1=0
Whakakapia te t mō te x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 22 mō te b, me te -1 mō te c i te ture pūrua.
t=\frac{-22±4\sqrt{31}}{6}
Mahia ngā tātaitai.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Whakaotia te whārite t=\frac{-22±4\sqrt{31}}{6} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt{\frac{2\sqrt{31}-11}{3}} x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-i\sqrt{\frac{2\sqrt{31}+11}{3}} x=i\sqrt{\frac{2\sqrt{31}+11}{3}}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x^{2}+4 ki te 2x^{2}+1 ka whakakotahi i ngā kupu rite.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Tangohia te 5x^{4} mai i ngā taha e rua.
3x^{4}+12x^{2}+4=-10x^{2}+5
Pahekotia te 8x^{4} me -5x^{4}, ka 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Me tāpiri te 10x^{2} ki ngā taha e rua.
3x^{4}+22x^{2}+4=5
Pahekotia te 12x^{2} me 10x^{2}, ka 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Tangohia te 5 mai i ngā taha e rua.
3x^{4}+22x^{2}-1=0
Tangohia te 5 i te 4, ka -1.
3t^{2}+22t-1=0
Whakakapia te t mō te x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 22 mō te b, me te -1 mō te c i te ture pūrua.
t=\frac{-22±4\sqrt{31}}{6}
Mahia ngā tātaitai.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Whakaotia te whārite t=\frac{-22±4\sqrt{31}}{6} ina he tōrunga te ±, ina he tōraro te ±.
x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-\sqrt{\frac{2\sqrt{31}-11}{3}}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}