Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(4x+4\right)\left(x-2\right)=-\left(1+2x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
4x^{2}-4x-8=-\left(1+2x\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+4 ki te x-2 ka whakakotahi i ngā kupu rite.
4x^{2}-4x-8=-\left(1+4x+4x^{2}\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+2x\right)^{2}.
4x^{2}-4x-8=-1-4x-4x^{2}
Hei kimi i te tauaro o 1+4x+4x^{2}, kimihia te tauaro o ia taurangi.
4x^{2}-4x-8+4x=-1-4x^{2}
Me tāpiri te 4x ki ngā taha e rua.
4x^{2}-8=-1-4x^{2}
Pahekotia te -4x me 4x, ka 0.
4x^{2}-8+4x^{2}=-1
Me tāpiri te 4x^{2} ki ngā taha e rua.
8x^{2}-8=-1
Pahekotia te 4x^{2} me 4x^{2}, ka 8x^{2}.
8x^{2}=-1+8
Me tāpiri te 8 ki ngā taha e rua.
8x^{2}=7
Tāpirihia te -1 ki te 8, ka 7.
x^{2}=\frac{7}{8}
Whakawehea ngā taha e rua ki te 8.
x=\frac{\sqrt{14}}{4} x=-\frac{\sqrt{14}}{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(4x+4\right)\left(x-2\right)=-\left(1+2x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
4x^{2}-4x-8=-\left(1+2x\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+4 ki te x-2 ka whakakotahi i ngā kupu rite.
4x^{2}-4x-8=-\left(1+4x+4x^{2}\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+2x\right)^{2}.
4x^{2}-4x-8=-1-4x-4x^{2}
Hei kimi i te tauaro o 1+4x+4x^{2}, kimihia te tauaro o ia taurangi.
4x^{2}-4x-8-\left(-1\right)=-4x-4x^{2}
Tangohia te -1 mai i ngā taha e rua.
4x^{2}-4x-8+1=-4x-4x^{2}
Ko te tauaro o -1 ko 1.
4x^{2}-4x-8+1+4x=-4x^{2}
Me tāpiri te 4x ki ngā taha e rua.
4x^{2}-4x-7+4x=-4x^{2}
Tāpirihia te -8 ki te 1, ka -7.
4x^{2}-7=-4x^{2}
Pahekotia te -4x me 4x, ka 0.
4x^{2}-7+4x^{2}=0
Me tāpiri te 4x^{2} ki ngā taha e rua.
8x^{2}-7=0
Pahekotia te 4x^{2} me 4x^{2}, ka 8x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-7\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 0 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-7\right)}}{2\times 8}
Pūrua 0.
x=\frac{0±\sqrt{-32\left(-7\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{0±\sqrt{224}}{2\times 8}
Whakareatia -32 ki te -7.
x=\frac{0±4\sqrt{14}}{2\times 8}
Tuhia te pūtakerua o te 224.
x=\frac{0±4\sqrt{14}}{16}
Whakareatia 2 ki te 8.
x=\frac{\sqrt{14}}{4}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{14}}{16} ina he tāpiri te ±.
x=-\frac{\sqrt{14}}{4}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{14}}{16} ina he tango te ±.
x=\frac{\sqrt{14}}{4} x=-\frac{\sqrt{14}}{4}
Kua oti te whārite te whakatau.