Whakaoti mō x
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x^{2}+2x+1\right)-169=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
4x^{2}+8x+4-169=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}+2x+1.
4x^{2}+8x-165=0
Tangohia te 169 i te 4, ka -165.
a+b=8 ab=4\left(-165\right)=-660
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx-165. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,660 -2,330 -3,220 -4,165 -5,132 -6,110 -10,66 -11,60 -12,55 -15,44 -20,33 -22,30
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -660.
-1+660=659 -2+330=328 -3+220=217 -4+165=161 -5+132=127 -6+110=104 -10+66=56 -11+60=49 -12+55=43 -15+44=29 -20+33=13 -22+30=8
Tātaihia te tapeke mō ia takirua.
a=-22 b=30
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(4x^{2}-22x\right)+\left(30x-165\right)
Tuhia anō te 4x^{2}+8x-165 hei \left(4x^{2}-22x\right)+\left(30x-165\right).
2x\left(2x-11\right)+15\left(2x-11\right)
Tauwehea te 2x i te tuatahi me te 15 i te rōpū tuarua.
\left(2x-11\right)\left(2x+15\right)
Whakatauwehea atu te kīanga pātahi 2x-11 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{11}{2} x=-\frac{15}{2}
Hei kimi otinga whārite, me whakaoti te 2x-11=0 me te 2x+15=0.
4\left(x^{2}+2x+1\right)-169=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
4x^{2}+8x+4-169=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}+2x+1.
4x^{2}+8x-165=0
Tangohia te 169 i te 4, ka -165.
x=\frac{-8±\sqrt{8^{2}-4\times 4\left(-165\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 8 mō b, me -165 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 4\left(-165\right)}}{2\times 4}
Pūrua 8.
x=\frac{-8±\sqrt{64-16\left(-165\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-8±\sqrt{64+2640}}{2\times 4}
Whakareatia -16 ki te -165.
x=\frac{-8±\sqrt{2704}}{2\times 4}
Tāpiri 64 ki te 2640.
x=\frac{-8±52}{2\times 4}
Tuhia te pūtakerua o te 2704.
x=\frac{-8±52}{8}
Whakareatia 2 ki te 4.
x=\frac{44}{8}
Nā, me whakaoti te whārite x=\frac{-8±52}{8} ina he tāpiri te ±. Tāpiri -8 ki te 52.
x=\frac{11}{2}
Whakahekea te hautanga \frac{44}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{60}{8}
Nā, me whakaoti te whārite x=\frac{-8±52}{8} ina he tango te ±. Tango 52 mai i -8.
x=-\frac{15}{2}
Whakahekea te hautanga \frac{-60}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{11}{2} x=-\frac{15}{2}
Kua oti te whārite te whakatau.
4\left(x^{2}+2x+1\right)-169=0
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
4x^{2}+8x+4-169=0
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}+2x+1.
4x^{2}+8x-165=0
Tangohia te 169 i te 4, ka -165.
4x^{2}+8x=165
Me tāpiri te 165 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{4x^{2}+8x}{4}=\frac{165}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{8}{4}x=\frac{165}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+2x=\frac{165}{4}
Whakawehe 8 ki te 4.
x^{2}+2x+1^{2}=\frac{165}{4}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=\frac{165}{4}+1
Pūrua 1.
x^{2}+2x+1=\frac{169}{4}
Tāpiri \frac{165}{4} ki te 1.
\left(x+1\right)^{2}=\frac{169}{4}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{169}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{13}{2} x+1=-\frac{13}{2}
Whakarūnātia.
x=\frac{11}{2} x=-\frac{15}{2}
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}