Whakaoti mō n
n=\frac{3}{4}=0.75
n=0
Tohaina
Kua tāruatia ki te papatopenga
4n^{2}-36=3\left(n-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te n^{2}-9.
4n^{2}-36=3n-36
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te n-12.
4n^{2}-36-3n=-36
Tangohia te 3n mai i ngā taha e rua.
4n^{2}-36-3n+36=0
Me tāpiri te 36 ki ngā taha e rua.
4n^{2}-3n=0
Tāpirihia te -36 ki te 36, ka 0.
n\left(4n-3\right)=0
Tauwehea te n.
n=0 n=\frac{3}{4}
Hei kimi otinga whārite, me whakaoti te n=0 me te 4n-3=0.
4n^{2}-36=3\left(n-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te n^{2}-9.
4n^{2}-36=3n-36
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te n-12.
4n^{2}-36-3n=-36
Tangohia te 3n mai i ngā taha e rua.
4n^{2}-36-3n+36=0
Me tāpiri te 36 ki ngā taha e rua.
4n^{2}-3n=0
Tāpirihia te -36 ki te 36, ka 0.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-3\right)±3}{2\times 4}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
n=\frac{3±3}{2\times 4}
Ko te tauaro o -3 ko 3.
n=\frac{3±3}{8}
Whakareatia 2 ki te 4.
n=\frac{6}{8}
Nā, me whakaoti te whārite n=\frac{3±3}{8} ina he tāpiri te ±. Tāpiri 3 ki te 3.
n=\frac{3}{4}
Whakahekea te hautanga \frac{6}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n=\frac{0}{8}
Nā, me whakaoti te whārite n=\frac{3±3}{8} ina he tango te ±. Tango 3 mai i 3.
n=0
Whakawehe 0 ki te 8.
n=\frac{3}{4} n=0
Kua oti te whārite te whakatau.
4n^{2}-36=3\left(n-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te n^{2}-9.
4n^{2}-36=3n-36
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te n-12.
4n^{2}-36-3n=-36
Tangohia te 3n mai i ngā taha e rua.
4n^{2}-3n=-36+36
Me tāpiri te 36 ki ngā taha e rua.
4n^{2}-3n=0
Tāpirihia te -36 ki te 36, ka 0.
\frac{4n^{2}-3n}{4}=\frac{0}{4}
Whakawehea ngā taha e rua ki te 4.
n^{2}-\frac{3}{4}n=\frac{0}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
n^{2}-\frac{3}{4}n=0
Whakawehe 0 ki te 4.
n^{2}-\frac{3}{4}n+\left(-\frac{3}{8}\right)^{2}=\left(-\frac{3}{8}\right)^{2}
Whakawehea te -\frac{3}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{8}. Nā, tāpiria te pūrua o te -\frac{3}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{3}{4}n+\frac{9}{64}=\frac{9}{64}
Pūruatia -\frac{3}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(n-\frac{3}{8}\right)^{2}=\frac{9}{64}
Tauwehea n^{2}-\frac{3}{4}n+\frac{9}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{3}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{3}{8}=\frac{3}{8} n-\frac{3}{8}=-\frac{3}{8}
Whakarūnātia.
n=\frac{3}{4} n=0
Me tāpiri \frac{3}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}