Whakaoti mō x
x = \frac{11}{10} = 1\frac{1}{10} = 1.1
x = \frac{21}{10} = 2\frac{1}{10} = 2.1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(-5x+8\right)^{2}-49+49=-24+49
Me tāpiri 49 ki ngā taha e rua o te whārite.
4\left(-5x+8\right)^{2}=-24+49
Mā te tango i te 49 i a ia ake anō ka toe ko te 0.
4\left(-5x+8\right)^{2}=25
Tāpiri -24 ki te 49.
\frac{4\left(-5x+8\right)^{2}}{4}=\frac{25}{4}
Whakawehea ngā taha e rua ki te 4.
\left(-5x+8\right)^{2}=\frac{25}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
-5x+8=\frac{5}{2} -5x+8=-\frac{5}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-5x+8-8=\frac{5}{2}-8 -5x+8-8=-\frac{5}{2}-8
Me tango 8 mai i ngā taha e rua o te whārite.
-5x=\frac{5}{2}-8 -5x=-\frac{5}{2}-8
Mā te tango i te 8 i a ia ake anō ka toe ko te 0.
-5x=-\frac{11}{2}
Tango 8 mai i \frac{5}{2}.
-5x=-\frac{21}{2}
Tango 8 mai i -\frac{5}{2}.
\frac{-5x}{-5}=-\frac{\frac{11}{2}}{-5} \frac{-5x}{-5}=-\frac{\frac{21}{2}}{-5}
Whakawehea ngā taha e rua ki te -5.
x=-\frac{\frac{11}{2}}{-5} x=-\frac{\frac{21}{2}}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x=\frac{11}{10}
Whakawehe -\frac{11}{2} ki te -5.
x=\frac{21}{10}
Whakawehe -\frac{21}{2} ki te -5.
x=\frac{11}{10} x=\frac{21}{10}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}